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We consider complete deterministic finite automata (DFAs).
A = 〈Q,Σ, δ〉 where Q stands for the state set, Σ is the input
alphabet, and δ : Q× Σ → Q is a (total) transition function.

To simplify notation we often introduce a DFA as 〈Q,Σ〉
and write q.w for δ(q, w) and P .w for {δ(q, w) | q ∈ P}.

Given a DFA A = 〈Q,Σ〉, a non-empty subset P ⊆ Q is reachable
in A if P = Q.w for some word w ∈ Σ∗.
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Definitions and Terminology

We consider complete deterministic finite automata (DFAs).
A = 〈Q,Σ, δ〉 where Q stands for the state set, Σ is the input
alphabet, and δ : Q× Σ → Q is a (total) transition function.

To simplify notation we often introduce a DFA as 〈Q,Σ〉
and write q.w for δ(q, w) and P .w for {δ(q, w) | q ∈ P}.

Given a DFA A = 〈Q,Σ〉, a non-empty subset P ⊆ Q is reachable
in A if P = Q.w for some word w ∈ Σ∗. A DFA is completely
reachable if every non-empty set of its states is reachable.
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Motivation: Synchronizing Automata

A DFA A = 〈Q,Σ〉 is synchronizing if there are a word w ∈ Σ∗

and a state f ∈ Q such that the action of w resets A to f

no matter at which state the action started: q.w = f for all q ∈ Q.
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and a state f ∈ Q such that the action of w resets A to f

no matter at which state the action started: q.w = f for all q ∈ Q.
In short, |Q.w| = 1; that is, a singleton is reachable in A .

Hence, a completely reachable automaton is synchronizing.

Any w with |Q.w| = 1 is a reset word for A .
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Motivation: Synchronizing Automata

A DFA A = 〈Q,Σ〉 is synchronizing if there are a word w ∈ Σ∗

and a state f ∈ Q such that the action of w resets A to f

no matter at which state the action started: q.w = f for all q ∈ Q.
In short, |Q.w| = 1; that is, a singleton is reachable in A .

Hence, a completely reachable automaton is synchronizing.

Any w with |Q.w| = 1 is a reset word for A . The minimum length
of reset words for A is called the reset threshold of A .
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A reset word is abbbabbba: applying it at any state brings
this automaton to the state 1.
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A reset word is abbbabbba: applying it at any state brings
this automaton to the state 1. In fact, this is the reset word of
minimum length for the automaton whence its reset threshold is 9.

The automaton belongs to the series {Cn} found by Jan Černý
in 1964.
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An Example

0 1

23
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b
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aa

A reset word is abbbabbba: applying it at any state brings
this automaton to the state 1. In fact, this is the reset word of
minimum length for the automaton whence its reset threshold is 9.

The automaton belongs to the series {Cn} found by Jan Černý
in 1964. For each n > 1, the automaton Cn has n states, 2 input
letters and reset threshold (n− 1)2.
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Černý Series

The states of Cn are the residues modulo n, and the input letters
a and b act as follows:

0.a = 1, m.a = m for 0 < m < n, m.b = m+ 1 (mod n).
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Černý Series

The states of Cn are the residues modulo n, and the input letters
a and b act as follows:

0.a = 1, m.a = m for 0 < m < n, m.b = m+ 1 (mod n).

The automaton in the previous slide is C4.

Mikhail Volkov Completely Reachable Automata



June 22, 2021
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The states of Cn are the residues modulo n, and the input letters
a and b act as follows:

0.a = 1, m.a = m for 0 < m < n, m.b = m+ 1 (mod n).

The automaton in the previous slide is C4.
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Černý Series

The states of Cn are the residues modulo n, and the input letters
a and b act as follows:

0.a = 1, m.a = m for 0 < m < n, m.b = m+ 1 (mod n).

The automaton in the previous slide is C4.
Here is a generic automaton from the Černý series:
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Černý has proved that the shortest reset word for Cn is
(abn−1)n−2a of length n(n− 2) + 1 = (n− 1)2.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
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Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. This simply looking conjecture is
arguably the most longstanding open problem in the combinatorial
theory of finite automata.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. Up to recently, everything we knew
about the conjecture in general could be summarized in one line:

(n− 1)2 ≤ C(n) ≤
n3 − n

6
.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. Up to recently, everything we knew
about the conjecture in general could be summarized in one line:

(n− 1)2 ≤ C(n) ≤
n3 − n

6
.

A small improvement on this bound has been found by Marek
Szyku la (STACS 2018): the new bound is still cubic in n but
improves the coefficient 1

6 = 0.1666 . . . at n3
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. Up to recently, everything we knew
about the conjecture in general could be summarized in one line:

(n− 1)2 ≤ C(n) ≤
n3 − n

6
.

A small improvement on this bound has been found by Marek
Szyku la (STACS 2018): the new bound is still cubic in n but
improves the coefficient 1

6 = 0.1666 . . . at n3

by 125
511104 ≈ 0.000245 so that it becomes ≈ 0.1664.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. Up to recently, everything we knew
about the conjecture in general could be summarized in one line:

(n− 1)2 ≤ C(n) ≤
n3 − n

6
.

A small improvement on this bound has been found by Marek
Szyku la (STACS 2018): the new bound is still cubic in n but
improves the coefficient 1

6 = 0.1666 . . . at n3

by 125
511104 ≈ 0.000245 so that it becomes ≈ 0.1664.

The new bound is
85059n3 + 90024n2 + 196504n − 10648

511104
.
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Černý Conjecture

Define the Černý function C(n) as the maximum reset threshold
of all synchronizing automata with n states. The above property
of the series {Cn} yields the inequality C(n) ≥ (n− 1)2.
The Černý conjecture is the claim that in fact the equality
C(n) = (n− 1)2 holds true. Up to recently, everything we knew
about the conjecture in general could be summarized in one line:

(n− 1)2 ≤ C(n) ≤
n3 − n

6
.

A small improvement on this bound has been found by Marek
Szyku la (STACS 2018): the new bound is still cubic in n but
improves the coefficient 1

6 = 0.1666 . . . at n3

by 125
511104 ≈ 0.000245 so that it becomes ≈ 0.1664.

The new bound is
85059n3 + 90024n2 + 196504n − 10648

511104
.

In 2019 Yaroslav Shitov found a further improvement to ≈ 0.1654.
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Teaser

Those who got interested in the Černý Conjecture can read more
in the forthcoming “Handbook of Automata Theory”
(EMS Publishing House, in print).
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Those who got interested in the Černý Conjecture can read more
in the forthcoming “Handbook of Automata Theory”
(EMS Publishing House, in print). See Chapter 15 in Volume I:
“Černý’s conjecture and the Road Coloring Problem” by Jarkko
Kari and MV.
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Those who got interested in the Černý Conjecture can read more
in the forthcoming “Handbook of Automata Theory”
(EMS Publishing House, in print). See Chapter 15 in Volume I:
“Černý’s conjecture and the Road Coloring Problem” by Jarkko
Kari and MV.

The latest developments may be found in the special issue of the
“Journal of Automata, Languages and Combinatorics” (Volume 24
(2019), no.2–4), freely available under
https://jalc.de/issues/2019/issue_24_2-4/content.html.
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Teaser

Those who got interested in the Černý Conjecture can read more
in the forthcoming “Handbook of Automata Theory”
(EMS Publishing House, in print). See Chapter 15 in Volume I:
“Černý’s conjecture and the Road Coloring Problem” by Jarkko
Kari and MV.

The latest developments may be found in the special issue of the
“Journal of Automata, Languages and Combinatorics” (Volume 24
(2019), no.2–4), freely available under
https://jalc.de/issues/2019/issue_24_2-4/content.html.
In particular, the special issue contains Shitov’s paper with the
best bound up to date.

Mikhail Volkov Completely Reachable Automata

https://jalc.de/issues/2019/issue_24_2-4/content.html


June 22, 2021

Approaching the Černý Conjecture

Since the Černý Conjecture has proved to be hard in general,
a natural strategy consists in considering its restrictions to some
special classes of DFAs.
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Approaching the Černý Conjecture

Since the Černý Conjecture has proved to be hard in general,
a natural strategy consists in considering its restrictions to some
special classes of DFAs.
The conjecture has been proved for many important special cases.
This includes for instance:
• Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Černý, RAIRO Inform. Theor. Appl.,
32 (1998) 21–34 [in French]).
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This includes for instance:
• Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Černý, RAIRO Inform. Theor. Appl.,
32 (1998) 21–34 [in French]).
• Jarkko Kari’s result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223–232).
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Approaching the Černý Conjecture

Since the Černý Conjecture has proved to be hard in general,
a natural strategy consists in considering its restrictions to some
special classes of DFAs.
The conjecture has been proved for many important special cases.
This includes for instance:
• Louis Dubuc’s result for automata in which a letter acts on the
state set Q as a cyclic permutation of order |Q| (Sur le automates
circulaires et la conjecture de Černý, RAIRO Inform. Theor. Appl.,
32 (1998) 21–34 [in French]).
• Jarkko Kari’s result for automata with Eulerian digraphs
(Synchronizing finite automata on Eulerian digraphs, Theoret.
Comput. Sci., 295 (2003) 223–232).
• Avraam Trahtman result for automata whose transition monoid
contains no non-trivial subgroups (The Černý conjecture for
aperiodic automata, Discrete Math. Theoret. Comp. Sci., 9, no.2
(2007), 3–10).
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An Observation

Observation (Marina Maslennikova, arXiv:1404.2816 (2014);
Henk Don, Electronic J. Combinatorics 23 (2016) #P3.12)

The Černý automata Cn are completely reachable.
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An Observation

Observation (Marina Maslennikova, arXiv:1404.2816 (2014);
Henk Don, Electronic J. Combinatorics 23 (2016) #P3.12)

The Černý automata Cn are completely reachable.

In an implicit form, this observation is contained in a result due to
Donald B. McAlister, Comm. Algebra 26(2) (1998) 515–547, who
provided a comprehensive analysis of the submonoid generated by
the transformations from the definition of the Černý automata in
the transformation monoid on the set {0, 1, . . . , n− 1}.
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An Observation

Observation (Marina Maslennikova, arXiv:1404.2816 (2014);
Henk Don, Electronic J. Combinatorics 23 (2016) #P3.12)

The Černý automata Cn are completely reachable.

In an implicit form, this observation is contained in a result due to
Donald B. McAlister, Comm. Algebra 26(2) (1998) 515–547, who
provided a comprehensive analysis of the submonoid generated by
the transformations from the definition of the Černý automata in
the transformation monoid on the set {0, 1, . . . , n− 1}.

For an illustration, consider the power-set automaton
of the Černý automaton C4.
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Restricting to Completely Reachable Automata

Recall that every completely reachable automaton is synchronizing.
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Restricting to Completely Reachable Automata

Recall that every completely reachable automaton is synchronizing.
On the other hand, the above observation ensures that the lower
bound (n− 1)2 for the Černý function C(n) is attained by a family
of completely reachable automata.
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Recall that every completely reachable automaton is synchronizing.
On the other hand, the above observation ensures that the lower
bound (n− 1)2 for the Černý function C(n) is attained by a family
of completely reachable automata.

Therefore completely reachable automata form quite a natural
class to study from the viewpoint of the Černý conjecture.
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bound (n− 1)2 for the Černý function C(n) is attained by a family
of completely reachable automata.

Therefore completely reachable automata form quite a natural
class to study from the viewpoint of the Černý conjecture.

There are further reasons to study complete reachability
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Restricting to Completely Reachable Automata

Recall that every completely reachable automaton is synchronizing.
On the other hand, the above observation ensures that the lower
bound (n− 1)2 for the Černý function C(n) is attained by a family
of completely reachable automata.

Therefore completely reachable automata form quite a natural
class to study from the viewpoint of the Černý conjecture.

There are further reasons to study complete reachability . . .
which we skip since we need time to introduce certain notions
that are used for our main results.
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Graph Γ1(A )

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.
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Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.

If df(w) = 1, the set Q\Q.w consists of a unique state excl(w),
the excluded state.
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Graph Γ1(A )

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.

If df(w) = 1, the set Q\Q.w consists of a unique state excl(w),
the excluded state. The set Q.w contains a unique duplicate state
p such that p = q1.w = q2.w for some q1 6= q2; this state p is
denoted by dupl(w).
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Graph Γ1(A )

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.

If df(w) = 1, the set Q\Q.w consists of a unique state excl(w),
the excluded state. The set Q.w contains a unique duplicate state
p such that p = q1.w = q2.w for some q1 6= q2; this state p is
denoted by dupl(w).

. . .

. . .

w

excl(w) dupl(w)
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Graph Γ1(A )

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.

If df(w) = 1, the set Q\Q.w consists of a unique state excl(w),
the excluded state. The set Q.w contains a unique duplicate state
p such that p = q1.w = q2.w for some q1 6= q2; this state p is
denoted by dupl(w).
Let Γ1(A ) denote the graph with the vertex set Q and the edge set

E1 := {(excl(w),dupl(w)) | df(w) = 1)}.
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Graph Γ1(A )

Let A = 〈Q,Σ〉 be a DFA. The defect of a word w ∈ Σ∗ w.r.t. A

is df(w) := |Q\Q.w|.

If df(w) = 1, the set Q\Q.w consists of a unique state excl(w),
the excluded state. The set Q.w contains a unique duplicate state
p such that p = q1.w = q2.w for some q1 6= q2; this state p is
denoted by dupl(w).
Let Γ1(A ) denote the graph with the vertex set Q and the edge set

E1 := {(excl(w),dupl(w)) | df(w) = 1)}.

Theorem (Bondar and MV, DCFS 2016)

If a DFA A = 〈Q,Σ〉 is such that the graph Γ1(A ) is strongly
connected, then A is completely reachable; more precisely,
for every non-empty subset P ⊆ Q, there is a product w of words
of defect 1 such that P = Q.w.
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Example

0

n−1 1

n−2 2

a, b

b

b

b

a

a

a

a

. . .

0

n−1 1

n−2 2. . .

[a] [ab]

[ab2][abn−1]

The automaton Cn Γ1(Cn) is strongly connected
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
An example was in our DCFS 2016 paper, and a stronger example
was found by François Gonze and Raphaël Jungers, DLT 2018.
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
An example was in our DCFS 2016 paper, and a stronger example
was found by François Gonze and Raphaël Jungers, DLT 2018.

Now we describe an iterative process for which the graph Γ1(A )
serves as the starting point.
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
An example was in our DCFS 2016 paper, and a stronger example
was found by François Gonze and Raphaël Jungers, DLT 2018.

Now we describe an iterative process for which the graph Γ1(A )
serves as the starting point. The process produces a sequence
of graphs Γ1(A ) ⊂ Γ2(A ) ⊂ · · · ⊂ Γk(A ), where k < n.

We add both new states and new edges when passing from
Γk−1(A ) to Γk(A ).
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
An example was in our DCFS 2016 paper, and a stronger example
was found by François Gonze and Raphaël Jungers, DLT 2018.

Now we describe an iterative process for which the graph Γ1(A )
serves as the starting point. The process produces a sequence
of graphs Γ1(A ) ⊂ Γ2(A ) ⊂ · · · ⊂ Γk(A ), where k < n.

We add both new states and new edges when passing from
Γk−1(A ) to Γk(A ).

For this, we extend the operators excl( ) and dupl( ) to words
with defect > 1: if A = 〈Q,Σ〉 is a DFA and w ∈ Σ∗, we define
excl(w) as the set Q\Q.w
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Graphs Γk(A )

The converse of this theorem does not hold: if A is a completely
reachable automaton, and even if for every non-empty subset
P ⊆ Q, there is a product w of words of defect 1 such that
P = Q.w, the graph Γ1(A ) need not be strongly connected.
An example was in our DCFS 2016 paper, and a stronger example
was found by François Gonze and Raphaël Jungers, DLT 2018.

Now we describe an iterative process for which the graph Γ1(A )
serves as the starting point. The process produces a sequence
of graphs Γ1(A ) ⊂ Γ2(A ) ⊂ · · · ⊂ Γk(A ), where k < n.

We add both new states and new edges when passing from
Γk−1(A ) to Γk(A ).

For this, we extend the operators excl( ) and dupl( ) to words
with defect > 1: if A = 〈Q,Σ〉 is a DFA and w ∈ Σ∗, we define
excl(w) as the set Q\Q.w and dupl(w) as the set
{p ∈ Q | p = q1.w = q2.w for some q1 6= q2}.
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Constructing Γk(A )

Let R1 := Q and J1 := E1.
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.

If Γk−1(A ) is strongly connected, we stop with SUCCESS.
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.

If Γk−1(A ) is strongly connected, we stop with SUCCESS.
If Γk−1(A ) is not strongly connected, and |∆ ∩Q| < k for each
SCC ∆ of Γk−1(A ), we stop with FAILURE.
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.

If Γk−1(A ) is strongly connected, we stop with SUCCESS.
If Γk−1(A ) is not strongly connected, and |∆ ∩Q| < k for each
SCC ∆ of Γk−1(A ), we stop with FAILURE.

Otherwise, we let Rk := Rk−1 ∪Qk where
Qk := {∆ | ∆ is a SCC of Γk−1(A ) such that |∆ ∩Q| ≥ k}
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.

If Γk−1(A ) is strongly connected, we stop with SUCCESS.
If Γk−1(A ) is not strongly connected, and |∆ ∩Q| < k for each
SCC ∆ of Γk−1(A ), we stop with FAILURE.

Otherwise, we let Rk := Rk−1 ∪Qk where
Qk := {∆ | ∆ is a SCC of Γk−1(A ) such that |∆ ∩Q| ≥ k}
and let Jk := Jk−1 ∪ Ik ∪ Ek where
Ik := {(D,C) ∈ Rk−1 ×Qk | D ⊂ C} (inclusion edges), and
Ek := {(C, p) ∈ Qk ×Q | C ⊇ excl(w), p ∈ dupl(w), df(w) = k}
(exclusion edges).
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Constructing Γk(A )

Let R1 := Q and J1 := E1. So, Γ1(A ) = (R1, J1).

Suppose that k > 1 and the graph Γk−1(A ) with the vertex set
Rk−1 and the edge set Jk−1 has already been defined.

If Γk−1(A ) is strongly connected, we stop with SUCCESS.
If Γk−1(A ) is not strongly connected, and |∆ ∩Q| < k for each
SCC ∆ of Γk−1(A ), we stop with FAILURE.

Otherwise, we let Rk := Rk−1 ∪Qk where
Qk := {∆ | ∆ is a SCC of Γk−1(A ) such that |∆ ∩Q| ≥ k}
and let Jk := Jk−1 ∪ Ik ∪ Ek where
Ik := {(D,C) ∈ Rk−1 ×Qk | D ⊂ C} (inclusion edges), and
Ek := {(C, p) ∈ Qk ×Q | C ⊇ excl(w), p ∈ dupl(w), df(w) = k}
(exclusion edges).

Now Γk(A ) :=
(

Rk, Jk
)

.
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Example

Consider the DFA E5 with 5 states 1, 2, 3, 4, 5 and 8 input letters
a[1], a[2], a[3], a[4], a[5], a[1,2], a[4,5], a[1,3] whose actions are shown
in the following table:

a[1] a[2] a[3] a[4] a[5] a[1,2] a[4,5] a[1,3]
1 2 1 1 1 1 3 1 4
2 2 1 1 2 2 3 1 4
3 3 3 2 3 3 3 2 4
4 4 4 4 5 4 4 3 5
5 5 4 5 5 4 5 3 5

.
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Example

Consider the DFA E5 with 5 states 1, 2, 3, 4, 5 and 8 input letters
a[1], a[2], a[3], a[4], a[5], a[1,2], a[4,5], a[1,3] whose actions are shown
in the following table:

a[1] a[2] a[3] a[4] a[5] a[1,2] a[4,5] a[1,3]
1 2 1 1 1 1 3 1 4
2 2 1 1 2 2 3 1 4
3 3 3 2 3 3 3 2 4
4 4 4 4 5 4 4 3 5
5 5 4 5 5 4 5 3 5

defect 1 1 1 1 1 2 2 3

.
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Graph Γ1(E5)

2 1 3 4 5

[a[2]]

[a[1]]

[a[3]]

[a[4]]

[a[5]]

a[1] a[2] a[3] a[4] a[5] a[1,2] a[4,5] a[1,3]
1 2 1 1 1 1 3 1 4
2 2 1 1 2 2 3 1 4
3 3 3 2 3 3 3 2 4
4 4 4 4 5 4 4 3 5
5 5 4 5 5 4 5 3 5
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Graph Γ1(E5)

2 1 3 4 5

[a[2]]

[a[1]]
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[a[4]]

[a[5]]

a[1] a[2] a[3] a[4] a[5] a[1,2] a[4,5] a[1,3]
1 2 1 1 1 1 3 1 4
2 2 1 1 2 2 3 1 4
3 3 3 2 3 3 3 2 4
4 4 4 4 5 4 4 3 5
5 5 4 5 5 4 5 3 5
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Graph Γ2(E5)

SCCs of Γ1(E5)

2 1 3 4 5
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Graph Γ2(E5)

SCCs of Γ1(E5)

2 1 3 4 5

Γ2(E5)

2 1 3 4 5

{1,2}

{4,5}
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Graph Γ2(E5)

SCCs of Γ1(E5)

2 1 3 4 5

Γ2(E5)

2 1 3 4 5

{1,2}

{4,5}
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Graph Γ2(E5)

SCCs of Γ1(E5)

2 1 3 4 5

Γ2(E5)

2 1 3 4 5

{1,2} [a[1,2]]

{4,5}

[a[4,5]]

[a[4,5]]

Mikhail Volkov Completely Reachable Automata



June 22, 2021

Graph Γ3(E5)

Γ3(E5)

2 1 3 4 5

{1,2}

{4,5}

{1,2,3}
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Graph Γ3(E5)

Γ3(E5)

2 1 3 4 5

{1,2}

{4,5}

{1,2,3}
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Graph Γ3(E5)

Γ3(E5)

2 1 3 4 5

{1,2}

{4,5}

{1,2,3}

[a[1,3]]

[a[1,3]]
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Graph Γ3(E5)

Γ3(E5)

2 1 3 4 5

{1,2}

{4,5}

{1,2,3}

[a[1,3]]

[a[1,3]]

We see that the graph Γ3(E5) is strongly connected
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Graph Γ3(E5)

Γ3(E5)

2 1 3 4 5

{1,2}

{4,5}

{1,2,3}

[a[1,3]]

[a[1,3]]

We see that the graph Γ3(E5) is strongly connected,
whence our process applied to E5 stops with SUCCESS.
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Main Results

Clearly, for a DFA A with n states, constructing the sequence of
graphs Γ1(A ), Γ2(A ), . . . must stop after at most n− 1 steps.
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Main Results

Clearly, for a DFA A with n states, constructing the sequence of
graphs Γ1(A ), Γ2(A ), . . . must stop after at most n− 1 steps.

Theorem 1

If for DFA A = (Q,Σ), the described process stops at step k with
SUCCESS (i.e., the graph Γk(A ) is strongly connected), then A

is completely reachable; more precisely, for every non-empty subset
P ⊆ Q, there is a product w of words of defect at most k such
that P = Q.w.
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Main Results

Clearly, for a DFA A with n states, constructing the sequence of
graphs Γ1(A ), Γ2(A ), . . . must stop after at most n− 1 steps.

Theorem 1

If for DFA A = (Q,Σ), the described process stops at step k with
SUCCESS (i.e., the graph Γk(A ) is strongly connected), then A

is completely reachable; more precisely, for every non-empty subset
P ⊆ Q, there is a product w of words of defect at most k such
that P = Q.w.

Theorem 2

If for DFA A = (Q,Σ), the described process stops at step k with
FAILURE, then A is not completely reachable; more precisely,
some subset in Q with at least |Q|− k states is not reachable in A .
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Characterization

Let Γ(A ) stand for the graph Γk(A ) at which our process stops
(with either of the two possible outcomes).
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Characterization

Let Γ(A ) stand for the graph Γk(A ) at which our process stops
(with either of the two possible outcomes).
Combining Theorems 1 and 2, we arrive at the following
characterization of completely reachable automata:
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Characterization

Let Γ(A ) stand for the graph Γk(A ) at which our process stops
(with either of the two possible outcomes).
Combining Theorems 1 and 2, we arrive at the following
characterization of completely reachable automata:

Theorem 3

A DFA A is completely reachable if and only if the graph Γ(A ) is
strongly connected.
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Complexity

It is still open whether or not complete reachability of a DFA
can be recognized in polynomial time.
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Complexity

It is still open whether or not complete reachability of a DFA
can be recognized in polynomial time.

The size of the graph Γ(A ) is polynomial in the size of A ,
but it is far from being obvious that Γ(A ) can always be
constructed in polynomial time.
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Complexity

It is still open whether or not complete reachability of a DFA
can be recognized in polynomial time.

The size of the graph Γ(A ) is polynomial in the size of A ,
but it is far from being obvious that Γ(A ) can always be
constructed in polynomial time.

Indeed, to construct the graph Γ1(A ) one must (in principle)
analyse all transformations caused by words of defect 1 w.r.t. A ,
and the number of such transformations may reach

(

n
2

)

n!.
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Complexity

It is still open whether or not complete reachability of a DFA
can be recognized in polynomial time.

The size of the graph Γ(A ) is polynomial in the size of A ,
but it is far from being obvious that Γ(A ) can always be
constructed in polynomial time.

Indeed, to construct the graph Γ1(A ) one must (in principle)
analyse all transformations caused by words of defect 1 w.r.t. A ,
and the number of such transformations may reach

(

n
2

)

n!.

Similarly, to construct the graph Γ2(A ) one must (in principle)
analyse all transformations caused by words of defect 2, etc.
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Complexity

It is still open whether or not complete reachability of a DFA
can be recognized in polynomial time.

The size of the graph Γ(A ) is polynomial in the size of A ,
but it is far from being obvious that Γ(A ) can always be
constructed in polynomial time.

Indeed, to construct the graph Γ1(A ) one must (in principle)
analyse all transformations caused by words of defect 1 w.r.t. A ,
and the number of such transformations may reach

(

n
2

)

n!.

Similarly, to construct the graph Γ2(A ) one must (in principle)
analyse all transformations caused by words of defect 2, etc.

François Gonze and Raphaël Jungers (DLT 2018) developed a
polynomial algorithm for constructing the graph Γ1(A )
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Complexity, continued

David Casas has managed to extend the approach of Gonze and
Jungers to master a polynomial algorithm for constructing the
graph Γ(A ) provided that all letters of A have defect at most 1.
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Complexity, continued

David Casas has managed to extend the approach of Gonze and
Jungers to master a polynomial algorithm for constructing the
graph Γ(A ) provided that all letters of A have defect at most 1.

Corollary

Complete reachability of binary DFAs is polynomially decidable.
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Complexity, continued

David Casas has managed to extend the approach of Gonze and
Jungers to master a polynomial algorithm for constructing the
graph Γ(A ) provided that all letters of A have defect at most 1.

Corollary

Complete reachability of binary DFAs is polynomially decidable.

The following polynomiality conjecture is a weaker version of a
conjecture suggested by Henk Don: there exists a constant c such
that in every completely reachable automaton with n states, each
non-empty subset can be reached by a word of length nc.
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Complexity, continued

David Casas has managed to extend the approach of Gonze and
Jungers to master a polynomial algorithm for constructing the
graph Γ(A ) provided that all letters of A have defect at most 1.

Corollary

Complete reachability of binary DFAs is polynomially decidable.

The following polynomiality conjecture is a weaker version of a
conjecture suggested by Henk Don: there exists a constant c such
that in every completely reachable automaton with n states, each
non-empty subset can be reached by a word of length nc. If this
conjecture holds, then Theorem 3 implies that the problem of
whether a given DFA is completely reachable lies in NP.

Mikhail Volkov Completely Reachable Automata



June 22, 2021

Complexity, continued

David Casas has managed to extend the approach of Gonze and
Jungers to master a polynomial algorithm for constructing the
graph Γ(A ) provided that all letters of A have defect at most 1.

Corollary

Complete reachability of binary DFAs is polynomially decidable.

The following polynomiality conjecture is a weaker version of a
conjecture suggested by Henk Don: there exists a constant c such
that in every completely reachable automaton with n states, each
non-empty subset can be reached by a word of length nc. If this
conjecture holds, then Theorem 3 implies that the problem of
whether a given DFA is completely reachable lies in NP.

It is known that there is no constant C such that in every DFA
with n states (not necessarily completely reachable!), each
reachable subset can be reached by a word of length nC .
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Synchronization

Recall that we motivated our interest in completely reachable
automata via the Černý conjecture, viewing complete reachability
as a stronger form of synchronization.
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Synchronization

Recall that we motivated our interest in completely reachable
automata via the Černý conjecture, viewing complete reachability
as a stronger form of synchronization.

What is the reset threshold of a completely reachable automaton?
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Synchronization

Recall that we motivated our interest in completely reachable
automata via the Černý conjecture, viewing complete reachability
as a stronger form of synchronization.

What is the reset threshold of a completely reachable automaton?
We have only a partial result:

Proposition

A completely reachable automaton with n states has a reset word

of length at most
7

48
n3 +O(n2).
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Synchronization

Recall that we motivated our interest in completely reachable
automata via the Černý conjecture, viewing complete reachability
as a stronger form of synchronization.

What is the reset threshold of a completely reachable automaton?
We have only a partial result:

Proposition

A completely reachable automaton with n states has a reset word

of length at most
7

48
n3 +O(n2).

7

48
≈ 0.1458333 improves on the best bound known for general

synchronizing automata (with the leading coefficient ≈ 0.1654).
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Synchronization

Recall that we motivated our interest in completely reachable
automata via the Černý conjecture, viewing complete reachability
as a stronger form of synchronization.

What is the reset threshold of a completely reachable automaton?
We have only a partial result:

Proposition

A completely reachable automaton with n states has a reset word

of length at most
7

48
n3 +O(n2).

7

48
≈ 0.1458333 improves on the best bound known for general

synchronizing automata (with the leading coefficient ≈ 0.1654).
Still, we fell short to get a quadratic upper bound so far.
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Happy Birthday Werner!!

Wir gratulieren herzlich zum Geburtstag und wünschen alles Gute!
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