From Deterministic Automata to Algebraic Decision Diagrams in Boolean Reasoning

Moshe Y. Vardi Rice University

Werner Kuich

Congratulations to Werner for his 80th birthday!

Many Thanks:

- For foundational work in automata theory, and
- For early recognition of the importance of *quantitative models*!

SAT Solving

SAT: Is a given Boolean formula (typically, in CNF), satisfiable?

David-Putnam-Logemann-Loveland, 1959-62:

- Backtracking search
- Unit propagation
- Pure-literal elimination

Modern CDCL SAT Solvers:

- Backjumping search
- Fast unit propagation
- Fast splitting rules
- Conflict-driven clause learning
- Restarts

4

The SAT Revolution

An Astonishing Technical Development

- \sim 1960: First algorithms for SAT
- S.A. Cook, 1971: *NP-completeness* SAT is the hardest problem in NP.
 - Common View: SAT is intractable!
- Late 1990s: Heuristic explosion!
- Mid 2000s: SAT solvers can handle problems with 1Ms variables!
- Late 2000s: "NP-easy" SAT solvers as generic problem solvers

Raining on The Party

Critical Observation: There is basically only one algorithm that scales well to large industrial problems - *CDCL*

• Based on weakest proof system – *resolution*

Provocative Note: "Monoculture" (the practice of cultivating a single crop over a wide area) is a risky practice!

This talk: A sketch of another technical approach

Satisfiability and Formal Languages

•
$$Prop = \{p_1, \ldots, p_n\}$$

- Truth assignment: $\alpha : Prop \rightarrow \{0, 1\}$
- Satisfying assignments: $models(\varphi) = \{ \alpha \ : \ \alpha \models \varphi \} \subseteq \{0,1\}^n$

Crux: $models(\varphi)$ is a finite, so regular language.

An Automata-Theoretic Approach to Satisfiability

Basic Approach:

- 1. Construct DFA A_{φ} such that $L(A_{\varphi}) = models(\varphi)$
- 2. Check that $L(A_{\varphi}) \neq \emptyset$

In more details:

- 1. $\varphi = c_1 \wedge \ldots \wedge c_k$ (CNF)
- 2. Construct DFA A_i for clause $c_i = \ell_{i_1} \vee \ell_{i_2} \vee \ldots$
- $3. A_{\varphi} = A_1 \times \ldots \times A_k$
- 4. $L(A_{\varphi}) \neq \emptyset$ iff there is a path from an initial state to an accepting state.

Problem: $|A_{\varphi}| = O(n^k)$

Don't Cares

Observation:

- Typically: $|c_i| \ll n$
- So why $|A_i| = O(n)$?
- After all, most propositions are "don't cares" in c_i ?

Desidetra:

• Automaton model that can "skip" don't-care letters, so $|A_i| = O(|c_i|)$

Solution: Binary Decision Diagrams!

Figure 1: BDD for $(a \wedge b) \vee (c \wedge d)$

Reduced Ordered Binary Decision Diagrams

BDDs: efficient way to manipulate Boolean functions

- directed acyclic graph ("folded decision tree")
- internal nodes correspond to Boolean variables
- all paths lead to one of the two terminal vertices labeled by 0 and 1

Properties:

- canonical representation for a given variable ordering
- easy equivalence check
- polynomial Boolean operations

BDD and **SAT** Solving

- Good News: $|B_i| = O(|c_i|)$
- Bad News: $|B_{\varphi}| = O(\prod_{i=1}^{k} |c_i|)$

Bottom Line: "Monolithic" approach not viable.

Complexity Theory and Proofs

Fundamental Questions:

• P = NP? NP = co - NP?

Cook-Reckhow's Theorem, 1979: NP = co - NP if and only if there exists a polynomially bounded propositional proof system.

Proof-Complexity Theory: Study of quantitative properties of propositional proof systems.

- Haken, 1985 Pigeonhole Principle requires exponentially long resolution proofs.
- Cook-Reckhow, 1985 Pigeonhole Principle does have polynomially long extended Frege proofs.

Proof Complexity and Satisfiability Solving

- Galil, 1977: A DPLL refutation can be transformed into a tree resolution refutation of the same size.
- Beame-Kautz-Sabharwal, 2003:
 - A CDCL refutation with clause learning and restarts can be transformed into a resolution refutation of the same size, and vice versa.
 - **Corollary**: CDCL is exponentially more powerful than DPLL.

Bottom line: Study of proof complexity is *practically* important to satisfiability solving.

Constraint Satisfaction Problem (CSP)

Input: P = (V, D, C):

- A finite set V of variables
- A finite set *D* of *values*
- A finite set C of constraints restricting the values that tuples of variables can take - Constraint: (x, R)
 - \mathbf{x} : a tuple of variables over V
 - R: a relation of arity $|\mathbf{x}|$

Solution: $h: V \to D$ such that $h(\mathbf{x}) \in R$: for all $(\mathbf{x}, R) \in C$

Decision Problem: Does (V, D, C) have a solution? I.e., is there an assignment of values to the variables such that all constraints are satisfied?

3-Colorability

3-COLOR: Given an undirected graph A = (V, E), is it 3-colorable?

- The variables are the nodes in V.
- The values are the elements in $\{\mathbf{R}, \mathbf{G}, \mathbf{B}\}$.
- The constraints are $\{(\langle u, v \rangle, \rho) : (u, v) \in E\}$, where $\rho = \{(R, G), (R, B), (G, R), (G, B), (B, R), (B, G)\}.$

Constraint Satisfaction

Applications:

- belief maintenance
- machine vision
- natural language processing
- planning and scheduling
- temporal reasoning
- type reconstruction
- bioinformatics
- • •

Homomorphisms

Homomorphism: Let $\mathbf{A} = (A, R_1^{\mathbf{A}}, \dots, R_m^{\mathbf{A}})$ and $\mathbf{B} = (B, R_1^{\mathbf{B}}, \dots, R_m^{\mathbf{B}})$ be two relational structures over same vocabulary.

 $h: A \to B$ is a *homomorphism* from A to B if for i = 1, ..., m and every tuple $(a_1, ..., a_n) \in A^n$,

$$R_i^{\mathbf{A}}(a_1,\ldots,a_n) \implies R_i^{\mathbf{B}}(h(a_1),\ldots,h(a_n)).$$

The Homomorphism Problem: Given relational structures A and B, is there a homomorphism $h : A \rightarrow B$?

Example: An undirected graph $\mathbf{A} = (V, E)$ is 3-colorable \iff there is a homomorphism $h : \mathbf{A} \to K_3$, where K_3 is the 3-clique.

Homomorphism Problems

Examples:

- k-Clique: $K_k \xrightarrow{h} (V, E)$?
- Hamiltonian Cycle: $(V, C_{|V|}, \neq) \xrightarrow{h} (V, E, \neq)$?
- Subgraph Isomorphism: $(V, E, \overline{E}) \xrightarrow{h} (V', E', \overline{E'})$? s-t Connectivity: $(V, E, \{\langle s, t \rangle\}) \xrightarrow{h} (\{0, 1\}, =, \neq)$?

Feder&V., STOC'93: CSP=Homomorphism Problem

Trivial reductions in both directions

Introduction to Database Theory

Basic Concepts:

- *Relation Scheme*: a set of attributes
- *Tuple*: mapping from relation scheme to data values
- Tuple Projection: if t is a tuple on P, and Q ⊆ P, then t[Q] is the restriction of t to Q.
- *Relation*: a set of tuples over a relation scheme
- Relational Projection: if R is a relation on P, and Q ⊆ P, then R[Q] is the relation {t[Q] : t ∈ R}.
- Join: Let R_i be a relation over relation scheme S_i . Then $\bowtie_i R_i$ is a relation over the relation scheme $\bigcup_i S_i$ defined by $\bowtie_i R_i = \{t : t[S_i] \in R_i\}$.

CSP Proofs

[Atserias, Kolaitis, V., 2004]: **CSP Refutation**: A CSP proof that P = (V, D, C) is unsatisfiable is a finite sequence of constraints (\mathbf{x}, R) each of which is of one of the following forms:

1. Axiom:
$$(\mathbf{x}, R) \in C$$

- 2. Join: $(\mathbf{x} \cup \mathbf{y}, R \bowtie S)$, where (\mathbf{x}, R) and (\mathbf{y}, S) are previous constraints,
- 3. *Projection*: $(\mathbf{x} \{x\}, R[\mathbf{x} \{x\}])$, where (\mathbf{x}, R) is a previous constraint,
- 4. Weakening: (\mathbf{x}, S) , where (\mathbf{x}, R) is a previous constraint and $R \subseteq S$,

where the last constraint has an *empty* relation.

Theorem: (V, D, C) has no solution iff it has a CSP refutation.

CSP Refutations and Constraint Propagation

Constraint propagation: technique for preprocessing and solving constraints

What is constraint propagation?

- Join: The constraints (\mathbf{x}, R) and (\mathbf{y}, S) are combined to yield $(\mathbf{x} \cup \mathbf{y}, R \bowtie S)$.
- *Projection*: The constraint $(\mathbf{x} \cup \mathbf{y}, R \bowtie S)$ is projected back on \mathbf{x} to yield $(\mathbf{x}, R \bowtie S)[\mathbf{x}]$.

Dechter-van Beek, 1997: $resolve_x(c,d)$ is

 $models(c) \bowtie models(d)[var(c \cup d) - \{x\}]$

Treewidth

Definition: A *tree decomposition* of a structure $\mathbf{A} = (A, R_1, \dots, R_m)$ is a labeled tree T such that

- Each label is a non-empty subset of A;
- For every R_i and every (a₁,..., a_n) ∈ R_i, there is a node whose label contains {a₁,..., a_n}.
- For every $a \in A$, the nodes whose label contain a form a subtree.

 $\operatorname{tw}(\mathbf{A}) = \min_{T} \{ \max\{ \text{label size in } T \} \} - 1$

Treewidth and Bounded-Width Proofs

Treewidth of CSP instance P: View tuples of constraints of P as tuples of a relational structure.

Width of Refutation: Maximal arity of constraints in refutation.

Atserias, Dalmau, Kolaitis and V., 2002-4: If P has treewidth at most k, then P is unsatisfiable iff P has width-k refutation.

Boolean Constraint Representation

Representing a constraint (\mathbf{x}, R) over Boolean domain:

- Relations: set of tuples
- Clauses: $\bigvee_i \pm x_i$
- Linear inequalities: $\sum_i a_i x_i \leq a_0$

Desideratum: polynomial closure under join, projection, and weakening.

• Clauses are closed under resolution, but not under join.

Another possibility: representation by *BDDs* – reduced, ordered, binary decision diagrams

BDDs vs. Resolution

AKV'04: BDDs polynomially simulate resolution.

Proof:

- Resolution=join+projection
- BDDs support polynomial join and projection
- A clausal constraint can be expressed by a linear-sized BDD exclude a single truth assignment.

AKV'04: Pigeonhole Principle has polynomial-size BDD refutations.

Conclusion: BDD refutations are exponentially more powerful than resolution.

More Power to BDDs

Gaussian calculus:

- Constraints: x + y + z = 0/1
- Proofs: Gaussian elimination

AKV'04: BDDs polynomially simulate the Gaussian calculus.

Cutting Planes:

- Constraints: $a_1x_1 + a_2x_2 + a_3x_3 \le a_0$ (unary coefficients)
- Proofs: addition, scalar multiplication, integer division

AKV'04: BDDs polynomially simulate Cutting Planes.

Discussion

So far: Proof complexity theory for CSP

- A general framework of CSP proofs
- Study of bounded-width CSP proofs
- Study of BDD proofs

Big Question: Is this useful for SAT solving?

BDD Proofs for SAT Solving

A Possible Approach [Pan-V., 2004]:

Perform constraint propagation, using joins and projections, exhaustively

 empty constraint implies unsatisfiability.

Question: At what order to apply joins and projections?

Naive Approach: Leverage the connection between bounded treewidth and bounded-width refutations

- Obtain an optimal tree decomposition.
- Use decomposition to guide deduction.

Problem: Finding an optimal tree decomposition is NP-hard.

A Practical Approach: Early Quantification

Early Quantification: A basic technique in BDD-based model checking.

• A SAT instance is a formula of the form

$$(\exists v_1)(\exists v_2)\dots(\exists v_n)(c_1 \wedge c_2 \wedge \dots \wedge c_m)$$

• 'If v_j does not appear in the clauses c_{k+1}, \ldots, c_m , then we can rewrite the formula into an equivalent one:

$$(\exists v_1) \dots (\exists v_{j-1}) (\exists v_{j+1}) \dots (\exists v_n) ((\exists v_j) (c_1 \land \dots \land c_k))$$
$$\land c_{k+1} \land \dots \land c_m)$$

Suggested Approach [Pan&V., 2004]: Join lazily, project eagerly.

Clause Reordering

Goal: Reorder clauses to maximize early quantification, i.e., minimize size of intermediate constraints.

Difficulty: Finding optimal clause order is NP-hard– related to finding optimal tree decomposition.

BDDSAT [Pan-V., 2004]:

- Borrow heuristics used to finding good tree decompositions.
- Borrow heuristics used in CSP
- Borrow heuristics used in symbolic model checking.

BDDSAT vs. ZChaff:: Random 3-CNF, density=1.5

BDDSAT vs. ZChaff:: Random 3-CNF, density=6

BDDSAT vs. ZChaff:: Random Biconditionals

BDDSAT vs. ZChaff:: Mutilated Checkerboard

Symbolic Approach vs. Search

Summary as of 2005:

- Symbolic approach scales better on some problems
- Incomparable in general

Note: Search has the benefit of 40 years of engineering!

My conclusion in 2005: Symbolic approach merits further study – need to understand areas of effectiveness

Bryant-Heule, 2021: "A powerful, BDD-based SAT solver to generate proofs of unsatisfiability"

Quantitative Boolean Reasoning

- Model counting (#SAT): computing number of satisfying assignments of Boolean formula
- **Complexity**: #P-complete (Valiant, 1979)
- Numerous applications: especially in probabilistic reasoning

Weighted Model Counting: Assignments are *weighted*, e.g., literal weighting:

- Each literal has a weight.
- Weight of assignment = product of literal weights
- Task: Compute sum of weights of satisfying assignments

Reduced Ordered Algebraic Decision Diagrams

ADDs: Efficient way to manipulate *pseudo-Boolean* functions

- directed acyclic graph ("folded decision tree")
- internal nodes correspond to Boolean variables
- terminal nodes labeled with real numbers

Properties:

- canonical representation for a given variable ordering
- polynomial plus/times operations

Weighted MC with ADDs

Basic Idea:

- Construct BDD B_{φ} for input formula φ .
- Combine with literal weights to construct ADD $A_{\varphi}: 2^{Prop(\varphi)} \to \mathbb{R}$
- Project all propositions using $\Sigma_p(A) = A[p \mapsto 0] + A[p \mapsto 1]$.

Problem: B_{φ} blows up.

ADDMC: Early quantification as in BDDSAT [Dudek, Phan, and V., 2020] – tied for 1st place of weighted track in 2020 Model Counting Competition.

Back to Tree Decompositions

Key Observation: Computing optimal tree decompositions is NP-hard, but there has been huge progress since 2005 in computing "good" tree decomspoitions, including *anytime* solvers.

DPMC: Early quantification, but based on tree decompositions rather than CSP heuristics [Dudek, Phan, and V., 2020].

• Empirical observation: DMPC beats ADDMC decisively.

Discussion

My points:

- BDDs and ADDs are variants of DFAs.
- BDDs/ADDs provide a viable approach to Boolean reasoning.
- Industrial tools are often hybrid engines *algorithmic protfolio*!
- The SAT community is ignoring this approach!

Questions:

- Are the competitions discouraging alternative approaches?
- How can we combine search and symbolic techniques?