
From Deterministic Automata to
Algebraic Decision Diagrams

in Boolean Reasoning

Moshe Y. Vardi
Rice University

Werner Kuich

Congratulations to Werner for his 80th birthday!

Many Thanks:

• For foundational work in automata theory, and

• For early recognition of the importance of quantitative models!

1

SAT Solving

SAT: Is a given Boolean formula (typically, in CNF), satisfiable?

David-Putnam-Logemann-Loveland, 1959-62:

• Backtracking search
• Unit propagation
• Pure-literal elimination

Modern CDCL SAT Solvers:

• Backjumping search
• Fast unit propagation
• Fast splitting rules
• Conflict-driven clause learning
• Restarts

‘

2

The SAT Revolution

An Astonishing Technical Development

• ∼1960: First algorithms for SAT

• S.A. Cook, 1971: NP-completeness – SAT is the hardest problem in NP.

– Common View: SAT is intractable!

• Late 1990s: Heuristic explosion!

• Mid 2000s: SAT solvers can handle problems with 1Ms variables!

• Late 2000s: “NP-easy”– SAT solvers as generic problem solvers

3

Raining on The Party

Critical Observation: There is basically only one algorithm that scales
well to large industrial problems - CDCL

• Based on weakest proof system – resolution

Provocative Note: “Monoculture” (the practice of cultivating a single
crop over a wide area) is a risky practice!

This talk: A sketch of another technical approach

4

Satisfiability and Formal Languages

• Prop = {p1, . . . , pn}
• Truth assignment: α : Prop→ {0, 1}
• Satisfying assignments: models(ϕ) = {α : α |= ϕ} ⊆ {0, 1}n

Crux: models(ϕ) is a finite, so regular language.

5

An Automata-Theoretic Approach to Satisfiability

Basic Approach:

1. Construct DFA Aϕ such that L(Aϕ) = models(ϕ)
2. Check that L(Aϕ) 6= ∅

In more details:

1. ϕ = c1 ∧ . . . ∧ ck (CNF)
2. Construct DFA Ai for clause ci = `i1 ∨ `i2 ∨ . . .
3. Aϕ = A1 × . . .×Ak

4. L(Aϕ) 6= ∅ iff there is a path from an initial state to an accepting state.

Problem: |Aϕ| = O(nk)

6

Don’t Cares

Observation:

• Typically: |ci| � n
• So why |Ai| = O(n)?
• After all, most propositions are “don’t cares” in ci?

Desidetra:

• Automaton model that can “skip” don’t-care letters, so |Ai| = O(|ci|)

Solution: Binary Decision Diagrams!

7

a

b

c

d

0 1

0

0

0

0

1

1
1

1

Figure 1: BDD for (a ∧ b) ∨ (c ∧ d)
8

Reduced Ordered Binary Decision Diagrams

BDDs: efficient way to manipulate Boolean functions

• directed acyclic graph (“folded decision tree”)
• internal nodes correspond to Boolean variables
• all paths lead to one of the two terminal vertices labeled by 0 and 1

Properties:

• canonical representation for a given variable ordering
• easy equivalence check
• polynomial Boolean operations

9

BDD and SAT Solving

• Good News: |Bi| = O(|ci||

• Bad News: |Bϕ| = O(Πk
i=1|ci|)

Bottom Line: “Monolithic” approach not viable.

10

Complexity Theory and Proofs

Fundamental Questions:

• P = NP? NP = co−NP?

Cook-Reckhow’s Theorem, 1979: NP = co−NP if and only if there
exists a polynomially bounded propositional proof system.

Proof-Complexity Theory: Study of quantitative properties of
propositional proof systems.

• Haken, 1985 – Pigeonhole Principle requires exponentially long resolution
proofs.
• Cook-Reckhow, 1985 – Pigeonhole Principle does have polynomially long

extended Frege proofs.

11

Proof Complexity and Satisfiability Solving

• Galil, 1977: A DPLL refutation can be transformed into a tree resolution
refutation of the same size.
• Beame-Kautz-Sabharwal, 2003:

– A CDCL refutation with clause learning and restarts can be transformed
into a resolution refutation of the same size, and vice versa.

– Corollary: CDCL is exponentially more powerful than DPLL.

Bottom line: Study of proof complexity is practically important to
satisfiability solving.

12

Constraint Satisfaction Problem (CSP)

Input: P = (V,D,C):

• A finite set V of variables
• A finite set D of values
• A finite set C of constraints restricting the values that tuples of variables

can take – Constraint: (x, R)
– x: a tuple of variables over V
– R: a relation of arity |x|

Solution: h : V → D such that h(x) ∈ R: for all (x, R) ∈ C

Decision Problem: Does (V,D,C) have a solution? I.e., is there an
assignment of values to the variables such that all constraints are satisfied?

13

3-Colorability

3-COLOR: Given an undirected graph A = (V,E), is it 3-colorable?

• The variables are the nodes in V .

• The values are the elements in {R,G,B}.

• The constraints are {(〈u, v〉, ρ) : (u, v) ∈ E}, where ρ =
{(R,G), (R,B), (G,R), (G,B), (B,R), (B,G)}.

14

Constraint Satisfaction

Applications:

• belief maintenance
• machine vision
• natural language processing
• planning and scheduling
• temporal reasoning
• type reconstruction
• bioinformatics
• · · ·

15

Homomorphisms

Homomorphism: Let A = (A,RA
1 , . . . , R

A
m) and B =

(B,RB
1 , . . . , R

B
m) be two relational structures over same vocabulary.

h : A → B is a homomorphism from A to B if for i = 1, . . . ,m and
every tuple (a1, . . . , an) ∈ An,

RA
i (a1, . . . , an) =⇒ RB

i (h(a1), . . . , h(an)).

The Homomorphism Problem: Given relational structures A and B,
is there a homomorphism h : A→ B?

Example: An undirected graph A = (V,E) is 3-colorable
⇐⇒

there is a homomorphism h : A→ K3, where K3 is the 3-clique.

16

Homomorphism Problems

Examples:

• k-Clique: Kk
h→ (V,E)?

• Hamiltonian Cycle: (V,C|V |, 6=)
h→ (V,E, 6=)?

• Subgraph Isomorphism: (V,E,E)
h→ (V ′, E′, E′)?

• s-t Connectivity: (V,E, {〈s, t〉})
h

6→ ({0, 1},=, 6=)?

Feder&V., STOC’93: CSP=Homomorphism Problem

• Trivial reductions in both directions

17

Introduction to Database Theory

Basic Concepts:

• Relation Scheme: a set of attributes
• Tuple: mapping from relation scheme to data values
• Tuple Projection: if t is a tuple on P , and Q ⊆ P , then t[Q] is the

restriction of t to Q.
• Relation: a set of tuples over a relation scheme
• Relational Projection: if R is a relation on P , and Q ⊆ P , then R[Q] is

the relation {t[Q] : t ∈ R}.
• Join: Let Ri be a relation over relation scheme Si. Then 1i Ri is a

relation over the relation scheme ∪iSi defined by 1i Ri = {t : t[Si] ∈
Ri}.

18

CSP Proofs

[Atserias, Kolaitis, V., 2004]: CSP Refutation: A CSP proof that
P = (V,D,C) is unsatisfiable is a finite sequence of constraints (x, R) each
of which is of one of the following forms:

1. Axiom: (x, R) ∈ C
2. Join: (x ∪ y, R 1 S), where (x, R) and (y, S) are previous constraints,

3. Projection: (x− {x}, R[x− {x}], where (x, R) is a previous constraint,

4. Weakening: (x, S), where (x, R) is a previous constraint and R ⊆ S,

where the last constraint has an empty relation.

Theorem: (V,D,C) has no solution iff it has a CSP refutation.

19

CSP Refutations and Constraint Propagation

Constraint propagation: technique for preprocessing and solving
constraints

What is constraint propagation?

• Join: The constraints (x, R) and (y, S) are combined to yield (x∪y, R 1

S).
• Projection: The constraint (x∪y, R 1 S) is projected back on x to yield

(x, R 1 S)[x]).

Dechter-van Beek, 1997: resolvex(c, d) is

models(c) 1 models(d)[var(c ∪ d)− {x}]

20

Treewidth

Definition: A tree decomposition of a structure A = (A,R1, . . . , Rm)
is a labeled tree T such that

• Each label is a non-empty subset of A;
• For every Ri and every (a1, . . . , an) ∈ Ri, there is a node whose label

contains {a1, . . . , an}.
• For every a ∈ A, the nodes whose label contain a form a subtree.

tw(A) = minT{max{label size in T}} − 1

21

Treewidth 2

22

Treewidth and Bounded-Width Proofs

Treewidth of CSP instance P : View tuples of constraints of P as tuples
of a relational structure.

Width of Refutation: Maximal arity of constraints in refutation.

Atserias, Dalmau, Kolaitis and V., 2002-4: If P has treewidth at most
k, then P is unsatisfiable iff P has width-k refutation.

23

Boolean Constraint Representation

Representing a constraint (x, R) over Boolean domain:

• Relations: set of tuples
• Clauses:

∨
i±xi

• Linear inequalities:
∑

i aixi ≤ a0

Desideratum: polynomial closure under join, projection, and weakening.

• Clauses are closed under resolution, but not under join.

Another possibility: representation by BDDs – reduced, ordered, binary
decision diagrams

24

BDDs vs. Resolution

AKV’04: BDDs polynomially simulate resolution.

Proof:

• Resolution=join+projection
• BDDs support polynomial join and projection
• A clausal constraint can be expressed by a linear-sized BDD – exclude a

single truth assignment.

AKV’04: Pigeonhole Principle has polynomial-size BDD refutations.

Conclusion: BDD refutations are exponentially more powerful than
resolution.

25

More Power to BDDs

Gaussian calculus:

• Constraints: x+ y + z = 0/1
• Proofs: Gaussian elimination

AKV’04: BDDs polynomially simulate the Gaussian calculus.

Cutting Planes:

• Constraints: a1x1 + a2x2 + a3x3 ≤ a0 (unary coefficients)
• Proofs: addition, scalar multiplication, integer division

AKV’04: BDDs polynomially simulate Cutting Planes.

26

Discussion

So far: Proof complexity theory for CSP

• A general framework of CSP proofs

• Study of bounded-width CSP proofs

• Study of BDD proofs

Big Question: Is this useful for SAT solving?

27

BDD Proofs for SAT Solving

A Possible Approach [Pan-V., 2004]:

• Perform constraint propagation, using joins and projections, exhaustively
– empty constraint implies unsatisfiability.

Question: At what order to apply joins and projections?

Naive Approach: Leverage the connection between bounded treewidth
and bounded-width refutations

• Obtain an optimal tree decomposition.
• Use decomposition to guide deduction.

Problem: Finding an optimal tree decomposition is NP-hard.

28

A Practical Approach: Early Quantification

Early Quantification: A basic technique in BDD-based model checking.

• A SAT instance is a formula of the form

(∃v1)(∃v2) . . . (∃vn)(c1 ∧ c2 ∧ . . . ∧ cm)

• ‘ If vj does not appear in the clauses ck+1, . . . , cm, then we can rewrite
the formula into an equivalent one:

(∃v1) . . . (∃vj−1)(∃vj+1) . . . (∃vn)((∃vj)(c1 ∧ . . . ∧ ck)

∧ck+1 ∧ . . . ∧ cm)

Suggested Approach [Pan&V., 2004]: Join lazily, project eagerly.

29

Clause Reordering

Goal: Reorder clauses to maximize early quantification, i.e., minimize
size of intermediate constraints.

Difficulty: Finding optimal clause order is NP-hard– related to finding
optimal tree decomposition.

BDDSAT [Pan-V., 2004]:

• Borrow heuristics used to finding good tree decompositions.

• Borrow heuristics used in CSP

• Borrow heuristics used in symbolic model checking.

30

BDDSAT vs. ZChaff:: Random 3-CNF, density=1.5

0 50 100 150 200
0

5

10

15

20

Variables

lo
g

2
 r

u
n
n
in

g
 t
im

e
(m

s
) Symbolic

Search

31

BDDSAT vs. ZChaff:: Random 3-CNF, density=6

0 50 100 150 200
0

5

10

15

20

Variables

lo
g

2
 r

u
n
n
in

g
 t
im

e
(m

s
)

Symbolic

Search

32

BDDSAT vs. ZChaff:: Random Biconditionals

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g

2
 r

u
n
n
in

g
 t
im

e
(m

s
)

Symbolic

Search

33

BDDSAT vs. ZChaff:: Mutilated Checkerboard

0 5 10 15 20
0

5

10

15

20

N

lo
g

2
 R

u
n
n
in

g
 T

im
e

Symbolic

Search

34

Symbolic Approach vs. Search

Summary as of 2005:

• Symbolic approach scales better on some problems

• Incomparable in general

Note: Search has the benefit of 40 years of engineering!

My conclusion in 2005: Symbolic approach merits further study –
need to understand areas of effectiveness

Bryant-Heule, 2021: “A powerful, BDD-based SAT solver to generate
proofs of unsatisfiability”

35

Quantitative Boolean Reasoning

• Model counting (#SAT): computing number of satisfying assignments
of Boolean formula
• Complexity: #P-complete (Valiant, 1979)
• Numerous applications: especially in probabilistic reasoning

Weighted Model Counting: Assignments are weighted, e.g., literal
weighting:

• Each literal has a weight.
• Weight of assignment = product of literal weights
• Task: Compute sum of weights of satisfying assignments

36

Reduced Ordered Algebraic Decision Diagrams

ADDs: Efficient way to manipulate pseudo-Boolean functions

• directed acyclic graph (“folded decision tree”)
• internal nodes correspond to Boolean variables
• terminal nodes labeled with real numbers

Properties:

• canonical representation for a given variable ordering
• polynomial plus/times operations

37

Weighted MC with ADDs

Basic Idea:

• Construct BDD Bϕ for input formula ϕ.
• Combine with literal weights to construct ADD Aϕ : 2Prop(ϕ) → R
• Project all propositions using Σp(A) = A[p 7→ 0] +A[p 7→ 1].

Problem: Bϕ blows up.

ADDMC: Early quantification as in BDDSAT [Dudek, Phan, and V.,
2020] – tied for 1st place of weighted track in 2020 Model Counting
Competition.

38

ADDMC

0 250 500 750 1000 1250 1500 1750 2000
Number of benchmarks solved

10−3

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv

in
g

ti
m

e
(s

ec
on

ds
)

VBS1

VBS0

d4

c2d

miniC2D

ADDMC

Cachet

39

Back to Tree Decompositions

Key Observation: Computing optimal tree decompositions is NP-hard,
but there has been huge progress since 2005 in computing “good” tree
decomspoitions, including anytime solvers.

DPMC: Early quantification, but based on tree decompositions rather
than CSP heuristics [Dudek, Phan, and V., 2020].

• Empirical observation: DMPC beats ADDMC decisively.

40

DPMC

0 250 500 750 1000 1250 1500 1750 2000

Number of benchmarks solved

10−3

10−2

10−1

100

101

102

103

L
on

ge
st

so
lv

in
g

ti
m

e
(s

)

HTB+tensor
HTB+DMC
LG+tensor
LG+DMC
cachet

miniC2D
c2d
d4
VBS0
VBS1

41

Discussion

My points:

• BDDs and ADDs are variants of DFAs.
• BDDs/ADDs provide a viable approach to Boolean reasoning.
• Industrial tools are often hybrid engines - algorithmic protfolio!
• The SAT community is ignoring this approach!

Questions:

• Are the competitions discouraging alternative approaches?
• How can we combine search and symbolic techniques?

42

