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Transductions

Let M and N be monoids. A transduction
7: M — N is a relation on M and N, viewed as a
function from M to P(N).

One extends 7 to a function P(M) — P(N) by
setting 7(P) = [U,,cp 7(m).

The inverse transduction 7 ': N — M is defined by

T Q) ={m e M|1(m)nQ #0}.
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Regularity-preserving functions and transductions

A function f : A* — B is regularity-preserving if,
for each regular language L of B*, f~1(L) is also
regular.

More generally, let C be a class of regular languages.
A function f : A* — B* is C-preserving if, for each
LeC, f7YL)isalso in C.

Same definitions for transductions.

Extensions to rational formal power series (Droste
and Zhang, 2003) will not be covered in this lecture.
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Part |

Some history
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Back to Werner's youth...

Stearns and Hartmanis,

Regularity preserving
modifications of
regular expressions (1963).
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Deleting a I/ -factor

Exercise. Let 11/ be any language. Show that if L
is regular [star-free], then so is

K ={u|u=xy and zwy € L for some w € W}
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Deleting a 11/ -factor, an algebraic proof

Exercise. Let 11/ be any language. Show that if L
is regular [star-free], then so is

K ={u|u =2y and zwy € L for some w € W}
Proof. Let h: A* — M be the syntactic morphism
of L. Setting

T={(n,m) e M x M| nh(W)mnh(L)# 0}
one gets

= U »wrm)

(n,m)eT

and the result follows.

I I'1 F CNRS et Université de Paris  8/52



Hopcroft and Ullman,
Formal Languages and their
relation to Automata (1969).

Kosaraju,

- Finite state automata
with markers (1970).

- Regularity preserving
functions (1974).
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Seiferas,
A note on prefixes
of regular languages (1974)

Seiferas and McNaughton,
Regularity-preserving functions (1976)
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Suffix removals

Let 7 : N — N be a transduction and L be a
language. Let

P(1,L) = {p | such that ps € L for some s
such that [s| € 7(|p|)}

When does L regular imply P(7, L) regular?

Theorem (Seiferas and McNaughton)

This happens iff T is regularity-preserving.
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Subword filtering problem (A. B. Matos)

Let f/ : N — N be a strictly increasing function.
Filtering a word u = agay - - - a,, through f consists
in just keeping the letters a; such that 7 is in the
range of f.

If L is regular, is the set of words of L filtered by f
always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006))

This happens iff the function Af defined by
Af(n) = f(n+ 1) — f(n) is regularity-preserving.
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Part |l

Functions from N to N

Siefkes,
Decidable extensions of monadic
second order successor arithmetic (1970)
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Ultimately periodic functions

A function [ : N — N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > ¢,
f(n+p)= f(n). For instance, the sequence

1,4,0,2,8,1,2,3,5,2,3,5,2,3,5,2,3,5, . ..
—— N N ——

is ultimately periodic.

A function f : N — N is ultimately periodic modulo
n if the function f mod n is ultimately periodic. It
is cyclically ultimately periodic if it is ultimately
periodic modulo n for all n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N — N s ultimately periodic modulo
n iff for 0 < k < n, the set f~(k + nN) is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N — N s regularity-preserving iff it is
cyclically ultimately periodic and, for every k € N,
the set (k) is regular.
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Regularity-preserving functions from N to N

[Siefkes 1970]

e Every polynomial function

o n — 2"

e n —n!

L2

o n— 22 (exponential stack of 2's of height n)
[Carton-Thomas 02]

e n — F,, (Fibonacci number)

e n — t,, where 1, is the prefix of length n of
the Prouhet-Thue-Morse sequence.
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Counterexamples [Siefkes 1970]

e n — |\/n] is not cyclically ultimately periodic
and hence not regularity-preserving.

o n — (2:) is not ultimately periodic modulo 4

and hence not regularity-preserving. Indeed

on 2 if n is a power of 2,
( > mod 4 = _
n 0 otherwise.

Open problem?

e Is the function n — p,, regularity-preserving?
(p,, is the n-th prime number).
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Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f,g: N — N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) gof, f+g, fg, [?, and f — g provided that
f>gand lim (f —g)(n) = +o0,
n—o0

(2) (generalised sum) n = > ;e i) f(3),
(3) (generalised product) n = [[o<;c ) /(D).
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Connections with logic

A function f : N — N is effectively regularity-
preserving if, for each given regular subset of N,
F7YR) is regular and effectively computable.

Recall that Af(n) = f(n+ 1) — f(n).

Theorem (Carton-Thomas 02)

Let xp be the characteristic function of a predicate
P C N. If Axp is effectively regularity-preserving,
then the monadic second order theory

MTh(N, <, P) is decidable.
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Recursivity

Let f/: N — {0, 1} be a non-recursive function.
Then the function n — (> -, [(i))!is
regularity-preserving but non-recursive.

Open problem. Is it possible to describe all
recursive regularity-preserving functions, respectively
all recursive cyclically ultimately periodic functions?

One could try to use Siefkes' primitive recursion
scheme (1970).
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Siefkes’ recursion scheme

Theorem

Let g : N¥* — N and h : N**2 - N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function | defined
from g and h by primitive recursion, i.e.

fO, 2, ..., x) = g(x, ..., x),
f(n‘i‘l,l’l,...,l'k)

h(n,l'l,...,xk,f<n7xla"'7xk>>

is cyclically ultimately periodic.
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The three technical conditions

(1) h is cyclically ultimately periodic in 2,5 of
decreasing period,

(2) g is essentially increasing in zy,

(3) forall x € NF*2 1o < h(xy, ..., 75e0).

A function f is essentially increasing in z; iff, for all
2z € N, there exists y € N such that for all z € N,
y < x;implies 2 < f(xy,...,2,).

A function f is c.u.p. of decreasing period in z; iff,
for all p, the period of the function f mod p in z; is

2
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Part ||

Matrix representations
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Matrix representations

ala b|b

pla)=a pb)=b plu) =u

Si(u) = uu fi(u) = (u(u))”
fo(u) = uav’ fo(w) = p(u)ap(u)?
m(u) = u () =) p(w)"
T(u) = U u o m(u) = Z plu)”
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b|1 b|b

n@ =5 1) w0 =8 ww=("" 0%
fu) = pa(w)po2(u)
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ala,b|b alab|b
8 ® 2
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Matrix representations

A transduction 7: A* — M admits a matrix
representation (5, ;1) of degree n if there exist a
monoid morphism pi: A* — P(M)"*" and a
possibly infinite union of products S involving
arbitrary subsets of M and n? variables
X11,..., X, such that, for all u € A*,

7_(“> — S[Ml,l(u>7 - ,,Lbn,n(u)]'

Example for n = 2: Let (P,),>0 be subsets of M.

S = J RX]\ P X1 X7\ X 2P X1 Pay

neN
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Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, 1) be a matrix representation of degree n of
a transduction 7: A* — M. Let P be a subset of
M recognised by a morphism n: M — N. Then the
language 7~ '(P) is recognised by the submonoid
ni(A*) of the monoid of matrices P(N)"*",

Corollary

Every transduction having a matrix representation is
regularity-preserving.
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Marseilles transductions

aka streaming string transducers, HDTOL

A substitution o : A* — B* is a monoid morphism
from A* to P(B”).

A Marseilles transducer is a sequential transducer
whose outputs are substitutions.

Proposition (Pin, Reynier, Villevallois, 2018)

Marseilles transductions are regularity-preserving.
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Marseilles transducers

The function f(a"cb?’) = a’bP" can be realized by
the following Marseilles transducer:

al o b| o

Y C|Id o

where A = {a,b,c¢}, B=AU{X,Y} and
o,01,09 : B* — B* are substitutions defined by

X(71:X Y(71:YX d(r]:dfordGA
Xoy, = Xb Yoo =Ya doy =dford e A
Xo=1 Yo=1 do=dforde A
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Marseilles transducers at work

The function f(a"cb?’) = a’bP" can be realized by
the following Marseilles transducer:

al o b| o

T(a"ch’) =Yoloho = (YX")oho = (Yob)(Xah)")o
= ((Ya")(XV")")o = a”b™"

Xop=X Yo, =YX doy =dforde A

Xoy, = Xb Yoo =Ya doy =dford e A
Xo=1 Yo=1 do=dforde A
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Part IV

Topology

| I'1 I CNRS et Université de Paris  32/52



Residually finite monoids

A monoid F' separates two elements =,y € M if
there exists a morphism ¢ : M — F' such that

p(z) # @(y).

A monoid is residually finite if any pair of distinct
elements of M/ can be separated by a finite monoid.

Finite monoids, free monoids, free groups are
residually finite. The monoids A} x A5 x --- x A*
are residually finite.
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Profinite metric

Let M be a residually finite monoid. The profinite
metric d is defined by setting, for u,v € M:

r(u,v) = min{|F| | F separates u and v}
d(u, U) _ 2—r(u,1))

with the conventions min () = +00 and 27 = 0.
Then

d(u,w) < max(d(u,v),d(v,w)) (ultrametric)
d(uw,vw) < d(u,v)
d(wu, wv) < d(u,v)
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Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there
exists a finite monoid F', a monoid morphism
@ : M — F and a subset () of F' such that

P =¢7(Q).

A function [ : M — N is recognizability-preserving
if, for each recognizable subset 12 of N, f~!(R) is
recognizable in M.

Same definition for recognizability-preserving
transductions.

| I'1 I CNRS et Université de Paris  35/52



Recognizability-preserving functions

Let M and N be two finitely generated, residually
finite monoids.

Theorem (Pin-Silva 2005)

A function M — N is recognizability-preserving iff
it is uniformly continuous for the profinite metrics.

What about recognizability-preserving
transductions?
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Example

Proposition (Pin-Silva 2005)

The function 7 : M x N — M defined by
7(z,n) = x" is recognizability-preserving.

Corollary. The function u — 1" is
recognizability-preserving. Indeed it can be
decomposed as

A" — A" x N A" x N — A*
u — (u, |u|) (u,m) — u"
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Another example
Let 7,: A" — (A")" be defined by

To(u) = {(ug, ..., up) | uy--u, =u}

Then both 7, and 7, ! are recognizability-preserving.

I I'1 I CNRS et Université de Paris  38/52



Completion

Let M be a finitely generated, residually finite
monoid. Let M be the completion of the metric
space (M, d).

Proposition

M is a compact monoid.
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Hausdorff metric

Let (M, d) be a compact metric monoid. Then the
set JC(M) of compact subsets of M is also a
compact monoid for the Hausdorff metric.

The Hausdorff metric on C(M ) is defined as
follows. For K, K’ € IC(M), let

(K, K') = sup d(z, K')
WK, K') = max(3(K, K'), 6(K', K))

Y

+ special definition if &K or K’ is empty
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Back to transductions

Let M and N be two finitely generated, residually
finite monoids and let 7 : M — N be a
transduction.

Defineamap 7: M — IC(]V) by setting, for each
re M, T(x)=r1(x).

Theorem (Pin-Silva 2005)

The transduction T is recognizability preserving iff T
is uniformly continuous.
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Part V

p-group languages
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p-group languages

Let p be a prime number. A p-group is a group in
which every element has order a power of p.

Target class: G, the class of languages recognized
by a finite p-group.

Goal. Characterization of G,-preserving functions.
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Separation by p-groups

Let © and v be two words of A*. A p-group
separates u and v if there is a monoid morphism ¢
from A" onto & such that ¢(u) # p(v).

Proposition

Any pair of distinct words can be separated by a
finite p-group.
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Pro-p metric

Let v and v be two words. Put

rp(u, v) = min{|G| ‘ (G is a p-group
that separates u and v}
—rp(u,v)

dy(u,v) =p

with the usual convention min () = —oo and
p > = 0. Then d, is an ultrametric:

(1) dy(u,v) =0 if and only if u = v,
(2) dp(u,v) = dy(v,u),
(3) dp(u,v) < max(dy(u, w), dp(w, v))
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Binomial coefficients (see Eilenberg or Lothaire)

Let w and v = a; - - - a,, be two words of A*. Then v

is a subword of w if there exist ug,...,u, € A" such
that v = upaiuy - - - U, _1apU, (the u;'s might be empty
words).

The binomial coefficient ( ) is the number of times

(%
(%

that v appears as a subword of .

abab, abab, abab. Thus <“b‘;b> _3

a

If w=2a" and v = @, then (ll) = (n).

(% m
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An equivalent metric

Let us set

r! (u,v) = min {‘l"‘ <u> 7 <) mod p)}

d;(u, v) = ph(w)

d; is an ultrametric uniformly equivalent to d,,.
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p-recognisable languages

Theorem (Eilenberg-Schiitzenberger 1976)

A language is recognized by a finite p-group iff it is
a finite Boolean combination of the languages

L(z,r,p) = {u € A" | (Z) = r mod p},

forO <r <pandzxe A*.
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The noncommutative difference operator

Let f: A" — F(B) be a function. For each letter
a, the difference operator A“f : A* — F(B) by

(A"f)(u) = f(u)"" f(ua)

The operator A" f : A* — [F(B) is defined for each
word w € A* by setting A'f = £, and for each
letter « € A and each word w € A,

A f = AY(A"S)

In fact, for all v,w € A*, A" f = A"(AYf)
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Taking u = 1

For w € A%, let 6,f = (A" f)(1). Then

orf = f(1)
0af = f(1)""f(a)
baaf = f(a) ' f(1)f(a)” 1f(Uba)
Obaaf = flaa)™ f(a)f(1)""f(a)f(ba)~" f(b)

f(ba)~! f(baa)

basaaf = f(baa)™ f(ba) F(B) " f(ba) f(a) ™ £(1)
#(a)™ f(aa) f(aaa)~" f(aa) f(a)"
f(aa)f(aba)~" f(ab) f(aba)~" f(abaa)
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G,-preserving functions

Theorem (Pin-Reutenauer 2018)

Let f be a function from A* to B*. Are equivalent:
(1) f is G,-preserving,
(2) f is uniformly continuous for d, (or d),
(3) hm\u|%oo dp<5uf7 1) =0,
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Happy birthday

Werner!
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