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Transductions

Let M and N be monoids. A transduction
τ : M → N is a relation on M and N , viewed as a
function from M to P(N).

One extends τ to a function P(M) → P(N) by
setting τ(P ) =

⋃
m∈P τ(m).

The inverse transduction τ−1 : N → M is defined by

τ−1(Q) = {m ∈ M | τ(m) ∩Q 6= ∅}.
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Regularity-preserving functions and transductions

A function f : A∗ → B∗ is regularity-preserving if,
for each regular language L of B∗, f−1(L) is also
regular.

More generally, let C be a class of regular languages.
A function f : A∗ → B∗ is C-preserving if, for each
L ∈ C, f−1(L) is also in C.
Same definitions for transductions.

Extensions to rational formal power series (Droste
and Zhang, 2003) will not be covered in this lecture.
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Part I

Some history
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Back to Werner’s youth...

Stearns and Hartmanis,

Regularity preserving
modifications of
regular expressions (1963).
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Deleting a W -factor

Exercise. Let W be any language. Show that if L
is regular [star-free], then so is

K = {u | u = xy and xwy ∈ L for some w ∈ W}
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Deleting a W -factor, an algebraic proof

Exercise. Let W be any language. Show that if L
is regular [star-free], then so is

K = {u | u = xy and xwy ∈ L for some w ∈ W}

Proof. Let h : A∗ → M be the syntactic morphism
of L. Setting

T = {(n,m) ∈ M ×M | nh(W )m ∩ h(L) 6= ∅}
one gets

K =
⋃

(n,m)∈T
h−1(n)h−1(m)

and the result follows.
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Hopcroft and Ullman,
Formal Languages and their
relation to Automata (1969).

Kosaraju,
- Finite state automata
with markers (1970).
- Regularity preserving
functions (1974).
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Seiferas,
A note on prefixes
of regular languages (1974)

Seiferas and McNaughton,
Regularity-preserving functions (1976)
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Suffix removals

Let τ : N → N be a transduction and L be a
language. Let

P (τ, L) = { p | such that ps ∈ L for some s

such that |s| ∈ τ(|p|)}

When does L regular imply P (τ, L) regular?

Theorem (Seiferas and McNaughton)

This happens iff τ is regularity-preserving.
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Subword filtering problem (A. B. Matos)

Let f : N → N be a strictly increasing function.
Filtering a word u = a0a1 · · · an through f consists
in just keeping the letters ai such that i is in the
range of f .

If L is regular, is the set of words of L filtered by f

always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006))

This happens iff the function ∆f defined by
∆f(n) = f(n+ 1)− f(n) is regularity-preserving.
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Part II

Functions from N to N

Siefkes,
Decidable extensions of monadic
second order successor arithmetic (1970)
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Ultimately periodic functions

A function f : N → N is ultimately periodic if there
exists t > 0 and p > 0 such that, for all n > t,
f(n+ p) = f(n). For instance, the sequence

1, 4, 0, 2, 8, 1, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, 2, 3, 5︸ ︷︷ ︸, . . .

is ultimately periodic.

A function f : N → N is ultimately periodic modulo
n if the function f mod n is ultimately periodic. It
is cyclically ultimately periodic if it is ultimately
periodic modulo n for all n > 0.
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Regularity-preserving functions from N to N

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N → N is ultimately periodic modulo
n iff for 0 6 k < n, the set f−1(k + nN) is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function f : N → N is regularity-preserving iff it is
cyclically ultimately periodic and, for every k ∈ N,
the set f−1(k) is regular.
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Regularity-preserving functions from N to N

[Siefkes 1970]

• Every polynomial function

• n → 2n

• n → n!

• n → 22
2
...2

(exponential stack of 2’s of height n)

[Carton-Thomas 02]

• n → Fn (Fibonacci number)

• n → tn, where tn is the prefix of length n of
the Prouhet-Thue-Morse sequence.
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Counterexamples [Siefkes 1970]

• n → ⌊√n⌋ is not cyclically ultimately periodic
and hence not regularity-preserving.

• n →
(
2n
n

)
is not ultimately periodic modulo 4

and hence not regularity-preserving. Indeed

(
2n

n

)
mod 4 =

{
2 if n is a power of 2,

0 otherwise.

Open problem?

• Is the function n → pn regularity-preserving?
(pn is the n-th prime number).
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Closure properties

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let f, g : N → N be cyclically ultimately periodic
functions. Then so are the following functions:

(1) g ◦ f , f + g, fg, f g, and f − g provided that
f > g and lim

n→∞
(f − g)(n) = +∞,

(2) (generalised sum) n →∑
06i6g(n) f(i),

(3) (generalised product) n →∏
06i6g(n) f(i).
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Connections with logic

A function f : N → N is effectively regularity-
preserving if, for each given regular subset of N,
f−1(R) is regular and effectively computable.

Recall that ∆f(n) = f(n+ 1)− f(n).

Theorem (Carton-Thomas 02)

Let χP be the characteristic function of a predicate
P ⊆ N. If ∆χP is effectively regularity-preserving,
then the monadic second order theory
MTh(N, <, P ) is decidable.
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Recursivity

Let f : N → {0, 1} be a non-recursive function.
Then the function n → (

∑
06i6n f(i))! is

regularity-preserving but non-recursive.

Open problem. Is it possible to describe all
recursive regularity-preserving functions, respectively
all recursive cyclically ultimately periodic functions?

One could try to use Siefkes’ primitive recursion
scheme (1970).
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Siefkes’ recursion scheme

Theorem

Let g : Nk → N and h : Nk+2 → N be cyclically
ultimately periodic functions satisfying three
technical conditions. Then the function f defined
from g and h by primitive recursion, i.e.

f(0, x1, . . . , xk) = g(x1, . . . , xk),

f(n+ 1, x1, . . . , xk) =

h(n, x1, . . . , xk, f(n, x1, . . . , xk))

is cyclically ultimately periodic.
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The three technical conditions

(1) h is cyclically ultimately periodic in xk+2 of
decreasing period,

(2) g is essentially increasing in xk,

(3) for all x ∈ N
k+2, xk+2 < h(x1, . . . , xk+2).

A function f is essentially increasing in xj iff, for all
z ∈ N, there exists y ∈ N such that for all x ∈ N

n,
y 6 xj implies z 6 f(x1, . . . , xn).

A function f is c.u.p. of decreasing period in xj iff,
for all p, the period of the function f mod p in xj is
6 p.
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Part III

Matrix representations
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Matrix representations

1a | a b | b

µ(a) = a µ(b) = b µ(u) = u

f1(u) = uu f1(u) = (µ(u))2

f2(u) = uau2 f2(u) = µ(u)aµ(u)2

τ1(u) = u∗ τ1(u) =
∑

n>0

µ(u)n

τ2(u) =
⋃

p prime

up τ2(u) =
∑

p prime

µ(u)p
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f (u) = a|u|ab|u|b

1 2

a | a

b | 1

a | 1

b | b

µ(a) =
(
a 0
0 1

)
µ(b) =

(
1 0
0 b

)
µ(u) =

(
a|u|a 0
0 b|u|b

)

f(u) = µ1,1(u)µ2,2(u)
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f (u) = Last(u)u

1 23

a | a, b | b

a | 1 b | 1

a | a, b | b

a b

µ(a) =

(
a 0 1
0 a 0
0 0 0

)
µ(b) =

(
b 0 0
0 b 1
0 0 0

)

µ(ua) =

(
ua 0 u
0 ua 0
0 0 0

)
µ(ub) =

(
ub 0 0
0 ub u
0 0 0

)

f(u) = aµ1,3(u) + bµ2,3(u)
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Matrix representations

A transduction τ : A∗ → M admits a matrix
representation (S, µ) of degree n if there exist a
monoid morphism µ : A∗ → P(M)n×n and a
possibly infinite union of products S involving
arbitrary subsets of M and n2 variables
X1,1, . . . , Xn,n, such that, for all u ∈ A∗,

τ(u) = S[µ1,1(u), . . . , µn,n(u)].

Example for n = 2: Let (Pn)n>0 be subsets of M .

S =
⋃

n∈N
P0X

n
1,1PnX2,1X

n
1,1X2,2Pn!X1,1P2n
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Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, µ) be a matrix representation of degree n of
a transduction τ : A∗ → M . Let P be a subset of
M recognised by a morphism η : M → N . Then the
language τ−1(P ) is recognised by the submonoid
ηµ(A∗) of the monoid of matrices P(N)n×n.

Corollary

Every transduction having a matrix representation is
regularity-preserving.
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Marseilles transductions

aka streaming string transducers, HDTOL

A substitution σ : A∗ → B∗ is a monoid morphism
from A∗ to P(B∗).

A Marseilles transducer is a sequential transducer
whose outputs are substitutions.

Proposition (Pin, Reynier, Villevallois, 2018)

Marseilles transductions are regularity-preserving.
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Marseilles transducers

The function f(ancbp) = apbpn can be realized by
the following Marseilles transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

where A = {a, b, c}, B = A ∪ {X, Y } and
σ, σ1, σ2 : B

∗ → B∗ are substitutions defined by

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Marseilles transducers at work

The function f(ancbp) = apbpn can be realized by
the following Marseilles transducer:

1 2

a | σ1

c | Id

b | σ2

Y σ

τ(ancbp) = Y σn
1
σ
p
2
σ = (Y Xn)σp

2
σ = ((Y σ

p
2
)(Xσ

p
2
)n)σ

= ((Y ap)(Xbp)n)σ = apbpn

Xσ1 = X Y σ1 = Y X dσ1 = d for d ∈ A

Xσ2 = Xb Y σ2 = Y a dσ2 = d for d ∈ A

Xσ = 1 Y σ = 1 dσ = d for d ∈ A
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Part IV

Topology
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Residually finite monoids

A monoid F separates two elements x, y ∈ M if
there exists a morphism ϕ : M → F such that
ϕ(x) 6= ϕ(y).

A monoid is residually finite if any pair of distinct
elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are
residually finite. The monoids A∗

1 × A∗
2 × · · · × A∗

n

are residually finite.
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Profinite metric

Let M be a residually finite monoid. The profinite
metric d is defined by setting, for u, v ∈ M :

r(u, v) = min
{
|F | F separates u and v}

d(u, v) = 2−r(u,v)

with the conventions min ∅ = +∞ and 2−∞ = 0.
Then

d(u, w) 6 max(d(u, v), d(v, w)) (ultrametric)

d(uw, vw) 6 d(u, v)

d(wu,wv) 6 d(u, v)
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Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there
exists a finite monoid F , a monoid morphism
ϕ : M → F and a subset Q of F such that
P = ϕ−1(Q).

A function f : M → N is recognizability-preserving
if, for each recognizable subset R of N , f−1(R) is
recognizable in M .

Same definition for recognizability-preserving
transductions.
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Recognizability-preserving functions

Let M and N be two finitely generated, residually
finite monoids.

Theorem (Pin-Silva 2005)

A function M → N is recognizability-preserving iff
it is uniformly continuous for the profinite metrics.

What about recognizability-preserving
transductions?
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Example

Proposition (Pin-Silva 2005)

The function τ : M × N → M defined by
τ(x, n) = xn is recognizability-preserving.

Corollary. The function u → u|u| is
recognizability-preserving. Indeed it can be
decomposed as

A∗ → A∗ × N A∗ × N → A∗

u → (u, |u|) (u, n) → un
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Another example

Let τn : A
∗ → (A∗)n be defined by

τn(u) = {(u1, . . . , un) | u1 · · ·un = u}

Then both τn and τ−1
n are recognizability-preserving.
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Completion

Let M be a finitely generated, residually finite

monoid. Let M̂ be the completion of the metric
space (M, d).

Proposition

M̂ is a compact monoid.
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Hausdorff metric

Let (M, d) be a compact metric monoid. Then the
set K(M) of compact subsets of M is also a
compact monoid for the Hausdorff metric.

The Hausdorff metric on K(M) is defined as
follows. For K,K ′ ∈ K(M), let

δ(K,K ′) = sup
x∈K

d(x,K ′)

h(K,K ′) = max(δ(K,K ′), δ(K ′, K))

+ special definition if K or K ′ is empty
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Back to transductions

Let M and N be two finitely generated, residually
finite monoids and let τ : M → N be a
transduction.

Define a map τ̂ : M → K(N̂) by setting, for each

x ∈ M , τ̂(x) = τ(x).

Theorem (Pin-Silva 2005)

The transduction τ is recognizability preserving iff τ̂

is uniformly continuous.
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Part V

p-group languages
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p-group languages

Let p be a prime number. A p-group is a group in
which every element has order a power of p.

Target class: Gp, the class of languages recognized
by a finite p-group.

Goal. Characterization of Gp-preserving functions.
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Separation by p-groups

Let u and v be two words of A∗. A p-group G

separates u and v if there is a monoid morphism ϕ

from A∗ onto G such that ϕ(u) 6= ϕ(v).

Proposition

Any pair of distinct words can be separated by a
finite p-group.
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Pro-p metric

Let u and v be two words. Put

rp(u, v) = min
{
|G| G is a p-group

that separates u and v}
dp(u, v) = p−rp(u,v)

with the usual convention min ∅ = −∞ and
p−∞ = 0. Then dp is an ultrametric:

(1) dp(u, v) = 0 if and only if u = v,

(2) dp(u, v) = dp(v, u),

(3) dp(u, v) 6 max(dp(u, w), dp(w, v))
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Binomial coefficients (see Eilenberg or Lothaire)

Let u and v = a1 · · · an be two words of A∗. Then v

is a subword of u if there exist u0, . . . , un ∈ A∗ such
that u = u0a1u1 · · ·un−1anun (the ui’s might be empty

words).

The binomial coefficient
(
u

v

)
is the number of times

that v appears as a subword of u.

abab, abab, abab. Thus
(
abab

ab

)
= 3.

If u = an and v = am, then
(
u

v

)
=
(
n

m

)
.
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An equivalent metric

Let us set

r′p(u, v) = min

{
|x|

(
u

x

)
6≡
(
v

x

)
(mod p)

}

d′p(u, v) = p−r′p(u,v)

Proposition

d′p is an ultrametric uniformly equivalent to dp.
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p-recognisable languages

Theorem (Eilenberg-Schützenberger 1976)

A language is recognized by a finite p-group iff it is
a finite Boolean combination of the languages

L(x, r, p) =
{
u ∈ A∗ |

(
u

x

)
≡ r mod p

}
,

for 0 6 r < p and x ∈ A∗.
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The noncommutative difference operator

Let f : A∗ → F (B) be a function. For each letter
a, the difference operator ∆af : A∗ → F (B) by

(∆af)(u) = f(u)−1f(ua)

The operator ∆wf : A∗ → F (B) is defined for each
word w ∈ A∗ by setting ∆1f = f , and for each
letter a ∈ A and each word w ∈ A∗,

∆awf = ∆a(∆wf)

In fact, for all v, w ∈ A∗, ∆vwf = ∆v(∆wf)
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Taking u = 1

For w ∈ A∗, let δwf = (∆wf)(1). Then

δ1f = f(1)

δaf = f(1)−1f(a)

δaaf = f(a)−1f(1)f(a)−1f(aa)

δbaaf = f(aa)−1f(a)f(1)−1f(a)f(ba)−1f(b)

f(ba)−1f(baa)

δabaaf = f(baa)−1f(ba)f(b)−1f(ba)f(a)−1f(1)

f(a)−1f(aa)f(aaa)−1f(aa)f(a)−1

f(aa)f(aba)−1f(ab)f(aba)−1f(abaa)
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Gp-preserving functions

Theorem (Pin-Reutenauer 2018)

Let f be a function from A∗ to B∗. Are equivalent:

(1) f is Gp-preserving,

(2) f is uniformly continuous for dp (or d
′
p),

(3) lim|u|→∞ dp(δuf, 1) = 0,
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Happy birthday

Werner!
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