Regularity preserving functions and transductions, a survey

Jean-Éric Pin

IRIF, CNRS and University Paris

June 23, RAQM 2021

Outline

- (1) Some history
- (2) Functions from \mathbb{N} to \mathbb{N}
- (3) Matrix representations
- (4) Topological approach
- (5) The case of *p*-group languages

Transductions

Let M and N be monoids. A transduction $\tau: M \to N$ is a relation on M and N, viewed as a function from M to $\mathcal{P}(N)$.

One extends τ to a function $\mathcal{P}(M) \to \mathcal{P}(N)$ by setting $\tau(P) = \bigcup_{m \in P} \tau(m)$.

The inverse transduction $\tau^{-1} \colon N \to M$ is defined by

 $\tau^{-1}(Q) = \{ m \in M \mid \tau(m) \cap Q \neq \emptyset \}.$

Regularity-preserving functions and transductions

A function $f : A^* \to B^*$ is regularity-preserving if, for each regular language L of B^* , $f^{-1}(L)$ is also regular.

More generally, let \mathcal{C} be a class of regular languages. A function $f : A^* \to B^*$ is \mathcal{C} -preserving if, for each $L \in \mathcal{C}, f^{-1}(L)$ is also in \mathcal{C} .

Same definitions for transductions.

Extensions to rational formal power series (Droste and Zhang, 2003) will not be covered in this lecture.

Part I

Some history

Back to Werner's youth...

Stearns and Hartmanis,

Regularity preserving modifications of regular expressions (1963).

Deleting a W-factor

Exercise. Let W be any language. Show that if L is regular [star-free], then so is

 $K = \{u \mid u = xy \text{ and } xwy \in L \text{ for some } w \in W\}$

Deleting a W-factor, an algebraic proof

Exercise. Let W be any language. Show that if L is regular [star-free], then so is

 $K = \{u \mid u = xy \text{ and } xwy \in L \text{ for some } w \in W\}$

Proof. Let $h: A^* \to M$ be the syntactic morphism of L. Setting

 $T = \{(n,m) \in M \times M \mid nh(W)m \cap h(L) \neq \emptyset\}$

one gets

$$K = \bigcup_{(n,m)\in T} h^{-1}(n)h^{-1}(m)$$

and the result follows.

Hopcroft and Ullman,

Formal Languages and their relation to Automata (1969).

Kosaraju,

- Finite state automata
- with markers (1970).
- Regularity preserving functions (1974).

Seiferas,

A note on prefixes of regular languages (1974)

Seiferas and McNaughton, Regularity-preserving functions (1976) Let $\tau : \mathbb{N} \to \mathbb{N}$ be a transduction and L be a language. Let

 $P(\tau, L) = \{ p \mid \text{such that } ps \in L \text{ for some } s \\ \text{such that } |s| \in \tau(|p|) \}$

When does L regular imply $P(\tau, L)$ regular?

Theorem (Seiferas and McNaughton)

This happens iff τ is regularity-preserving.

Subword filtering problem (A. B. Matos)

Let $f : \mathbb{N} \to \mathbb{N}$ be a strictly increasing function. Filtering a word $u = a_0 a_1 \cdots a_n$ through f consists in just keeping the letters a_i such that i is in the range of f.

If L is regular, is the set of words of L filtered by f always regular?

Theorem (Berstel, Boasson, Carton, Petazzoni, P. (2006))

This happens iff the function Δf defined by $\Delta f(n) = f(n+1) - f(n)$ is regularity-preserving.

Part II

Functions from \mathbb{N} to \mathbb{N}

Siefkes,

Decidable extensions of monadic second order successor arithmetic (1970)

Ultimately periodic functions

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic if there exists $t \ge 0$ and p > 0 such that, for all $n \ge t$, f(n+p) = f(n). For instance, the sequence

 $1, 4, 0, 2, 8, 1, \underbrace{2, 3, 5}_{4, 2, 3, 5}, \underbrace{2, 3, 5}_{4, 2, 3, 5}, \underbrace{2, 3, 5}_{4, 2, 3, 5}, \ldots$

is ultimately periodic.

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n if the function $f \mod n$ is ultimately periodic. It is cyclically ultimately periodic if it is ultimately periodic modulo n for all n > 0.

Regularity-preserving functions from \mathbb{N} to \mathbb{N}

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is ultimately periodic modulo n iff for $0 \leq k < n$, the set $f^{-1}(k + n\mathbb{N})$ is regular.

Theorem (Siefkes 1970, Seiferas-McNaughton 1976)

A function $f : \mathbb{N} \to \mathbb{N}$ is regularity-preserving iff it is cyclically ultimately periodic and, for every $k \in \mathbb{N}$, the set $f^{-1}(k)$ is regular.

Regularity-preserving functions from $\mathbb N$ to $\mathbb N$

[Siefkes 1970]

- Every polynomial function
- $n \rightarrow 2^n$
- $n \rightarrow n!$

• $n \to 2^{2^2}$ (exponential stack of 2's of height n)

[Carton-Thomas 02]

- $n \rightarrow F_n$ (Fibonacci number)
- *n* → *t_n*, where *t_n* is the prefix of length *n* of the Prouhet-Thue-Morse sequence.

Counterexamples [Siefkes 1970]

- n → ⌊√n⌋ is not cyclically ultimately periodic and hence not regularity-preserving.
- $n \rightarrow \binom{2n}{n}$ is not ultimately periodic modulo 4 and hence not regularity-preserving. Indeed

$$\binom{2n}{n} \mod 4 = \begin{cases} 2 & \text{if } n \text{ is a power of } 2, \\ 0 & \text{otherwise.} \end{cases}$$

Open problem?

• Is the function $n \rightarrow p_n$ regularity-preserving? (p_n is the *n*-th prime number).

Theorem (Siefkes 70, Zhang 98, Carton-Thomas 02)

Let $f, g: \mathbb{N} \to \mathbb{N}$ be cyclically ultimately periodic functions. Then so are the following functions: (1) $g \circ f$, f + g, fg, f^g , and f - g provided that $f \ge g$ and $\lim_{n \to \infty} (f - g)(n) = +\infty$, (2) (generalised sum) $n \to \sum_{0 \le i \le g(n)} f(i)$, (3) (generalised product) $n \to \prod_{0 \le i \le g(n)} f(i)$.

Connections with logic

A function $f : \mathbb{N} \to \mathbb{N}$ is effectively regularitypreserving if, for each given regular subset of \mathbb{N} , $f^{-1}(R)$ is regular and effectively computable.

Recall that $\Delta f(n) = f(n+1) - f(n)$.

Theorem (Carton-Thomas 02)

Let χ_P be the characteristic function of a predicate $P \subseteq \mathbb{N}$. If $\Delta \chi_P$ is effectively regularity-preserving, then the monadic second order theory $\mathrm{MTh}(\mathbb{N}, <, P)$ is decidable.

Recursivity

Let $f : \mathbb{N} \to \{0, 1\}$ be a non-recursive function. Then the function $n \to (\sum_{0 \leq i \leq n} f(i))!$ is regularity-preserving but non-recursive.

Open problem. Is it possible to describe all recursive regularity-preserving functions, respectively all recursive cyclically ultimately periodic functions?

One could try to use Siefkes' primitive recursion scheme (1970).

Siefkes' recursion scheme

Theorem

Let $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^{k+2} \to \mathbb{N}$ be cyclically ultimately periodic functions satisfying three technical conditions. Then the function f defined from g and h by primitive recursion, i.e.

$$f(0, x_1, \dots, x_k) = g(x_1, \dots, x_k),$$

$$f(n+1, x_1, \dots, x_k) = h(n, x_1, \dots, x_k, f(n, x_1, \dots, x_k))$$

is cyclically ultimately periodic.

The three technical conditions

- (1) h is cyclically ultimately periodic in x_{k+2} of decreasing period,
- (2) g is essentially increasing in x_k ,
- (3) for all $x \in \mathbb{N}^{k+2}$, $x_{k+2} < h(x_1, \dots, x_{k+2})$.
- A function f is essentially increasing in x_j iff, for all $z \in \mathbb{N}$, there exists $y \in \mathbb{N}$ such that for all $x \in \mathbb{N}^n$, $y \leq x_j$ implies $z \leq f(x_1, \ldots, x_n)$.

A function f is c.u.p. of decreasing period in x_j iff, for all p, the period of the function $f \mod p$ in x_j is $\leq p$.

Part III

Matrix representations

Matrix representations

$$a \mid a \underbrace{1}_{b} \mid b$$

$$\mu(a) = a \quad \mu(b) = b \quad \mu(u) = u$$

$$f_{1}(u) = uu \qquad f_{1}(u) = (\mu(u))^{2}$$

$$f_{2}(u) = uau^{2} \qquad f_{2}(u) = \mu(u)a\mu(u)^{2}$$

$$\tau_{1}(u) = u^{*} \qquad \tau_{1}(u) = \sum_{n \ge 0} \mu(u)^{n}$$

$$\tau_{2}(u) = \bigcup_{p \text{ prime}} u^{p} \qquad \tau_{2}(u) = \sum_{p \text{ prime}} \mu(u)^{p}$$

$$\Gamma \downarrow \Gamma \text{ CNRS et Université de Paris$$

24/52

$$f(u) = a^{|u|_a} b^{|u|_b}$$

$$\mu(a) = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \quad \mu(b) = \begin{pmatrix} 1 & 0 \\ 0 & b \end{pmatrix} \quad \mu(u) = \begin{pmatrix} a^{|u|_a} & 0 \\ 0 & b^{|u|_b} \end{pmatrix}$$
$$f(u) = \mu_{1,1}(u)\mu_{2,2}(u)$$

 $f(u) = \operatorname{Last}(u)u$

 $f(u) = a\mu_{1,3}(u) + b\mu_{2,3}(u)$

Matrix representations

A transduction $\tau: A^* \to M$ admits a matrix representation (S, μ) of degree n if there exist a monoid morphism $\mu: A^* \to \mathcal{P}(M)^{n \times n}$ and a possibly infinite union of products S involving arbitrary subsets of M and n^2 variables $X_{1,1}, \ldots, X_{n,n}$, such that, for all $u \in A^*$,

$$\tau(u) = S[\mu_{1,1}(u), \dots, \mu_{n,n}(u)].$$

Example for n = 2: Let $(P_n)_{n \ge 0}$ be subsets of M.

$$S = \bigcup_{n \in \mathbb{N}} P_0 X_{1,1}^n P_n X_{2,1} X_{1,1}^n X_{2,2} P_{n!} X_{1,1} P_{2n}$$

Matrix representation of transducers

Theorem (Pin-Sakarovitch 1983)

Let (S, μ) be a matrix representation of degree n of a transduction $\tau: A^* \to M$. Let P be a subset of M recognised by a morphism $\eta: M \to N$. Then the language $\tau^{-1}(P)$ is recognised by the submonoid $\eta\mu(A^*)$ of the monoid of matrices $\mathcal{P}(N)^{n \times n}$.

Corollary

Every transduction having a matrix representation is regularity-preserving.

aka streaming string transducers, HDTOL

A substitution $\sigma: A^* \to B^*$ is a monoid morphism from A^* to $\mathcal{P}(B^*)$.

A Marseilles transducer is a sequential transducer whose outputs are substitutions.

Proposition (Pin, Reynier, Villevallois, 2018)

Marseilles transductions are regularity-preserving.

Marseilles transducers

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following Marseilles transducer:

where $A = \{a, b, c\}, B = A \cup \{X, Y\}$ and $\sigma, \sigma_1, \sigma_2 : B^* \to B^*$ are substitutions defined by

$$\begin{aligned} X\sigma_1 &= X & Y\sigma_1 = YX & d\sigma_1 = d \text{ for } d \in A \\ X\sigma_2 &= Xb & Y\sigma_2 = Ya & d\sigma_2 = d \text{ for } d \in A \\ X\sigma &= 1 & Y\sigma = 1 & d\sigma = d \text{ for } d \in A \end{aligned}$$

Marseilles transducers at work

The function $f(a^n cb^p) = a^p b^{pn}$ can be realized by the following Marseilles transducer:

 $\tau(a^n cb^p) = Y\sigma_1^n \sigma_2^p \sigma = (YX^n)\sigma_2^p \sigma = ((Y\sigma_2^p)(X\sigma_2^p)^n)\sigma$ $= ((Ya^p)(Xb^p)^n)\sigma = a^p b^{pn}$

 $\begin{aligned} X\sigma_1 &= X & Y\sigma_1 = YX & d\sigma_1 = d \text{ for } d \in A \\ X\sigma_2 &= Xb & Y\sigma_2 = Ya & d\sigma_2 = d \text{ for } d \in A \\ X\sigma &= 1 & Y\sigma = 1 & d\sigma = d \text{ for } d \in A \end{aligned}$

Part IV

Topology

Residually finite monoids

A monoid F separates two elements $x, y \in M$ if there exists a morphism $\varphi : M \to F$ such that $\varphi(x) \neq \varphi(y)$.

A monoid is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Finite monoids, free monoids, free groups are residually finite. The monoids $A_1^* \times A_2^* \times \cdots \times A_n^*$ are residually finite.

Profinite metric

Let M be a residually finite monoid. The profinite metric d is defined by setting, for $u, v \in M$:

$$r(u, v) = \min\{|F| \mid F \text{ separates } u \text{ and } v\}$$

 $d(u, v) = 2^{-r(u,v)}$

with the conventions $\min \emptyset = +\infty$ and $2^{-\infty} = 0$. Then

 $\begin{aligned} &d(u,w) \leqslant \max(d(u,v),d(v,w)) \quad \text{(ultrametric)} \\ &d(uw,vw) \leqslant d(u,v) \\ &d(wu,wv) \leqslant d(u,v) \end{aligned}$

Recognisable subsets of a monoid

A subset P of a monoid M is recognizable if there exists a finite monoid F, a monoid morphism $\varphi: M \to F$ and a subset Q of F such that $P = \varphi^{-1}(Q)$.

A function $f: M \to N$ is recognizability-preserving if, for each recognizable subset R of N, $f^{-1}(R)$ is recognizable in M.

Same definition for recognizability-preserving transductions.

Recognizability-preserving functions

Let M and N be two finitely generated, residually finite monoids.

Theorem (Pin-Silva 2005)

A function $M \rightarrow N$ is recognizability-preserving iff it is uniformly continuous for the profinite metrics.

What about recognizability-preserving transductions?

Proposition (Pin-Silva 2005)

The function $\tau : M \times \mathbb{N} \to M$ defined by $\tau(x, n) = x^n$ is recognizability-preserving.

Corollary. The function $u \rightarrow u^{|u|}$ is recognizability-preserving. Indeed it can be decomposed as

 $A^* \to A^* \times \mathbb{N} \qquad A^* \times \mathbb{N} \to A^*$ $u \to (u, |u|) \qquad (u, n) \to u^n$

Another example

Let $\tau_n \colon A^* \to (A^*)^n$ be defined by

$$\tau_n(u) = \{(u_1,\ldots,u_n) \mid u_1\cdots u_n = u\}$$

Then both τ_n and τ_n^{-1} are recognizability-preserving.

Completion

Let M be a finitely generated, residually finite monoid. Let \widehat{M} be the completion of the metric space (M, d).

Hausdorff metric

Let (M, d) be a compact metric monoid. Then the set $\mathcal{K}(M)$ of compact subsets of M is also a compact monoid for the Hausdorff metric.

The Hausdorff metric on $\mathcal{K}(M)$ is defined as follows. For $K, K' \in \mathcal{K}(M)$, let

$$\begin{split} \delta(K, K') &= \sup_{x \in K} d(x, K') \\ h(K, K') &= \max(\delta(K, K'), \delta(K', K)) \\ &+ \text{special definition if } K \text{ or } K' \text{ is empty} \end{split}$$

Let M and N be two finitely generated, residually finite monoids and let $\tau: M \to N$ be a transduction.

Define a map $\widehat{\tau} : M \to \mathcal{K}(\widehat{N})$ by setting, for each $x \in M$, $\widehat{\tau}(x) = \overline{\tau(x)}$.

Theorem (Pin-Silva 2005)

The transduction τ is recognizability preserving iff $\hat{\tau}$ is uniformly continuous.

Part V

p-group languages

Let p be a prime number. A p-group is a group in which every element has order a power of p.

Target class: \mathcal{G}_p , the class of languages recognized by a finite *p*-group.

Goal. Characterization of \mathcal{G}_p -preserving functions.

Separation by *p*-groups

Let u and v be two words of A^* . A p-group Gseparates u and v if there is a monoid morphism φ from A^* onto G such that $\varphi(u) \neq \varphi(v)$.

Proposition

Any pair of distinct words can be separated by a finite p-group.

Pro-p metric

Let u and v be two words. Put

 $r_p(u,v) = \min \{ |G| \mid G \text{ is a } p\text{-group}$ that separates u and $v \}$ $d_p(u,v) = p^{-r_p(u,v)}$

with the usual convention $\min \emptyset = -\infty$ and $p^{-\infty} = 0$. Then d_p is an ultrametric: (1) $d_p(u, v) = 0$ if and only if u = v, (2) $d_p(u, v) = d_p(v, u)$, (3) $d_p(u, v) \leq \max(d_p(u, w), d_p(w, v))$

Binomial coefficients (see Eilenberg or Lothaire)

Let u and $v = a_1 \cdots a_n$ be two words of A^* . Then v is a subword of u if there exist $u_0, \ldots, u_n \in A^*$ such that $u = u_0 a_1 u_1 \cdots u_{n-1} a_n u_n$ (the u_i 's might be empty words).

The binomial coefficient $\binom{u}{v}$ is the number of times that v appears as a subword of u.

$$abab, abab, abab$$
. Thus $\binom{abab}{ab} = 3$.

If
$$\displaystyle \frac{u}{v} = \displaystyle \frac{a^n}{v}$$
 and $\displaystyle v = \displaystyle \frac{a^m}{v}$, then $\displaystyle \binom{u}{v} = \displaystyle \binom{n}{m}$.

An equivalent metric

Let us set

$$r'_p(u,v) = \min\left\{ |x| \mid \binom{u}{x} \not\equiv \binom{v}{x} \pmod{p} \right\}$$
$$d'_p(u,v) = p^{-r'_p(u,v)}$$

Proposition

 d'_p is an ultrametric uniformly equivalent to d_p .

p-recognisable languages

Theorem (Eilenberg-Schützenberger 1976)

A language is recognized by a finite p-group iff it is a finite Boolean combination of the languages

$$L(x,r,p)=\Big\{u\in A^*\mid inom{u}{x}igm)\equiv rmod p\Big\},$$

for $0 \leq r < p$ and $x \in A^*$.

The noncommutative difference operator

Let $f : A^* \to F(B)$ be a function. For each letter *a*, the difference operator $\Delta^a f : A^* \to F(B)$ by

 $(\Delta^a f)(u) = f(u)^{-1} f(ua)$

The operator $\Delta^w f : A^* \to F(B)$ is defined for each word $w \in A^*$ by setting $\Delta^1 f = f$, and for each letter $a \in A$ and each word $w \in A^*$,

$$\Delta^{aw} f = \Delta^a (\Delta^w f)$$

In fact, for all $v, w \in A^*$, $\Delta^{vw} f = \Delta^v (\Delta^w f)$

Taking u = 1

For $w \in A^*$, let $\delta_w f = (\Delta^w f)(1)$. Then

 $\delta_1 f = f(1)$ $\delta_a f = f(1)^{-1} f(a)$ $\delta_{aa} f = f(a)^{-1} f(1) f(a)^{-1} f(aa)$ $\delta_{baa} f = f(aa)^{-1} f(a) f(1)^{-1} f(a) f(ba)^{-1} f(b)$ $f(ba)^{-1}f(baa)$ $\delta_{abaa} f = f(baa)^{-1} f(ba) f(b)^{-1} f(ba) f(a)^{-1} f(1)$ $f(a)^{-1}f(aa)f(aaa)^{-1}f(aa)f(a)^{-1}$ $f(aa) f(aba)^{-1} f(ab) f(aba)^{-1} f(abaa)$

\mathcal{G}_{p} -preserving functions

Theorem (Pin-Reutenauer 2018)

Let f be a function from A^* to B^* . Are equivalent: (1) f is \mathcal{G}_p -preserving, (2) f is uniformly continuous for d_p (or d'_p), (3) $\lim_{|u|\to\infty} d_p(\delta_u f, 1) = 0$,

Happy birthday Werner!

I I I F CNRS et Université de Paris 52/52