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Conway semirings, matrices and formal power series.

Advantages:

(1)  Constructions needed in the proofs are mainly
the usual ones.

(1)  Proofs are separated from the constructions and
do not need the intuitive content of the

constructions.

(111)  Proofs are more satisfactory from the
mathematical point of view.

(iv)  Results are more general than the usual ones.
Conway semirings: defined by

sum — star — equation and product — star — equation.

Proofs can be separated into two parts:

()  establish the needed results of the theory of
Conway semirings,

(i)  simple equational reasoning,

Leads to a transparent structure of the proofs.



Semiring: <S,+,,0,1> or simply S.
(i) <S,+,0>is a commutative monoid,
(ii) <S,,1>is a monoid,

(i) the distribution laws a‘(b+c) = ab+a'c and

(a+b)-c = actbc hold for every a,b,c,
(iv) O'a=a0 = 0 for every a.

In the sequel, S denotes a semiring and A a finite
alphabet.

Commutative: if ab = ba for every a and b.
Starsemiring: additional unary operation *.
Complete semiring: infinite sums are defined.

Complete starsemiring: complete as a semiring and,
for each element a
k

a*= > a
=0



Examples of complete starsemirings are:

Boolean semiring B = <{0,1},+,,0,1> with
1+1=1

Nonnegative numbers with oo:
N” = <NU{w},+,,0,1> with 00 = 000 = 0, 0* = 1 and
a*= oo forall a=0.

The semiring of Formal Languages over A.

The semiring of Formal Power Series over a
commutative semiring S and A: S<<A*>>:
B<<A*>>is isomorph to the semiring of Formal
Languages over A.

The tropical semirings.

The semiring of binary relations.

In the sequel, if graphs are considered, we assume that
the basic semiring of the inscriptions of the edges is a
complete starsemiring.
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(Mk)ij is the language of inscriptions of paths of
length k from i to j.

M* defined by (M*); = ¥ (MY);
is the language **
of inscriptions of all paths from i to j.

Inscriptions of paths from 1 to 1 not passing through 1:
a, bd"c,n>0.

Language of these inscriptions: a + bd*c.

Language of inscriptions from 1 to 1:
(M*);; = (a+bd*c)*.

Language of inscriptions from 1 to 2:
(M*);, = (a+ bd*c)*bd*.



The (2,1) and (2,2) entries of M* are given by
symmetry.

This yields
(a+ bd*c)* (a + bd*c)*bd*

M* =
(d + ca*b)*ca* (d + ca*b)*



The semiring of square matrices of dimension n:
<S™, +,,0, E >,

For a matrix M of dimension n, M* is inductively defined
as follows:
(1) Forn=1and M = (a),
M* = (a*).

(1) Forn>1 and

(a+bd*c)*  (a+bd*c)*bd*

M*
(d + ca*b)*ca* (d + ca*b)*

where a 1xI b Ix(n-1)
¢c (m-1Dx1 d (m-Dx(n-1)

Given a starsemiring, the star of a square matrix is always
defined in this manner.



Three equations for starsemirings, important in
automata theory:

(1) The sum — star — equation is valid in S if
(a+b)*=(a*b)*a* forall a,b;

(2) The product — star — equation is valid in S if
(ab)* =1+ a(ba)*b for all a,b;

(3) Let M and M* be given as in the definition of the
star of M, but with

a nyXxXn; b nxmnm
C XN d nmxn

where n; + n, =n.

The matrix — star — equation is valid in S if
the computation of M* is independent of the partition of
n into summands n;,n,

Conway semiring: starsemiring satisfying the
sum — star equation and the product — star — equation.

- Theorem (Conway). If S is a Conway semiring then the
matrix semirings S™" are Conway semirings. Moreover,
the matrix — star — equation is valid for Conway
semirings.



The matrix — star equation implies

*..
a b a*  a*bd*

0 d 0 d*

One can remember the (1,2) — block by

qmd

4 2

A complete starsemiring is a Conway semiring.

If the Conway semiring S is a complete semiring, it can be
proven that

k>0

1.e., the starsemiring of nxn — matrices over S is a complete
starsemiring.

In the sequel, S denotes a Conway semiring, and S’
denotes a subset of S containing 0 and 1.
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A finite S” — automaton

A= (n,M,LP)

1s given by
(1)  theset of states {1, ...,n},n>1,
(ii)  atransition matrix M € S™",
(1i1)  an initial state vector 1 e S’IX“,

(iv)

a final state vector P ¢ S™!.
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Behavior ||| of ¥:

[ = LIM*);P; = IM*P.
z.

<1,)<n

Directed labeled graph of 9:

nodes: 1, ..., n,

edges: from 1 to j if M; # 0 and labeled by M;
initial nodes: 1 if I; # 0 with weight I;

final nodes: j if P; # 0 with weight P,

Path

has weight

(Mk)ij sum of the weights of paths of lenght k from i to j
If' S is a complete semiring, (M*); = (Mk)ij is the
k>0

sum of the weights of paths from i to j.
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Normalized finite S” - automaton o = (n,M,L,P), n> 2,

The finite automata 9 and 9’ are equivalent if
U] = [[41].

Theorem. Each finite S - automaton is equivalent to a
normalized finite S” - automaton.

Proof. Let ¥ = (n,M,LP), A'=(1+n+1, M, 1, P).
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Rat(S")  substarsemiring generated by S, i.e.,
smallest starsemiring containing S’

Rec(S”)  collection of all behaviors of finite

S’ - automata.

Theorem. Let S be a Conway semiring and S’ be a subset
of S containing 0,1. Then

Rat(S") = Rec(S")
Proof.

(1) Rec(S") < Rat(S").

By induction M* € (Rat(S"))™, for 9f = (n,M,I,P),

190 = IM*P € Rat(S").
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(ii) Rat(S") = Rec(S").

ForaeS’,

a
= >
/ é\j\

A= (2,(a),(1),(1)) with ||| = a, proving a € Rec(S”) and
S” < Rec(S).

Given finite S” - automata
A=n,M,LP)and A'=(n" M1’ ,P),
we define S’- finite automata

A+ A", A A and Y*

such that

R+ = 1A + 1L, [1Q61] = (1[I 12¥'], []26%]] = JjQ)|*.
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Construction of 2 + ',

o o=m+n,( D) a1, (3

19+ Q|| = (I 1')(1\6[ 1\2,)*(5’,)) = ( 1')(1\(;[* 1\919 (E) =

IM*P + T'M"*P" = (||| + [|20].
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Construction of A,

n+i Il+] \P,_] ,

AA' = (n+n’, (12)/1 IK/II) , (1 0), (1(3)’))

Assume that 9 or 9’ are normalized. Then the entries of
PI" are in S”. Hence, A is a finite S’ - automaton.

per=a o™ FY) -

y oo
aoly "M% Y)(P = (IM%IM*PI'M#)(2) =

IM*PI'M"*P" = |[21]||[2V].
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Construction of 2*,

A

g[*

o =(1+n,(5 ) 0. ()

pef=a o (3 Y@= -

(0 -+ IM*P)* = || *



S’e Rec(S”) and Rec(S”) is closed under the operations
+,, *, 1.e., Rec(S") is a starsemiring containing S’.

Since Rat(S’) is the smallest starsemiring containing S’

Rat(S") < Rec(S).

19



20

Formal power series over a finite alphabet A:

r: A*— S, r(w) = (r,w) coefficient of w,

written as formal sum r =Y (r,w)w.
weA*

I, I, re S<<A*>>:
1t 1, with (1] + 1,w) = (r,w) + (12,w)

I'1°Ty with (rl or29w) = Z(rlau)(r%v)

Uuv=w

r* with (r*,€) = (r,e)*,

(r*,w) = (r,e)* > (r,u)(r*,v), w # €.

Uv=w,u#£¢
Given a starsemiring, the star of a formal power series is
always defined in this manner.

Theorem (Bloom, Esik). If S is a Conway semiring
then the semiring of formal power series S<<A*>> is a
Conway semiring.

If the Conway semiring S is a complete semiring, it can
be proven that

r* = Z rk
K0
.., the starsemiring of formal power series over A is a

complete starsemiring.
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Notation:

S<Aue> ... (r,e)e + D (1,x)x.
XeA
S<A> ......... > (1,x)x
XeA
S<e> ... (r,€)e

A finite S<Aue> - automaton 9 = (n,M,L,P) is called
standard finite S<Aug> - automaton if

(1) M € (S<A>)™" |
(1) IL;=¢L=0,2<i<n,
(iii) P; € S<e>, 1<j<n.

ReCSt(S<AU8>) =
{[[%¥]/ 9t is a standard finite S<AUe> - automaton}.
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Theorem. Let S be a Conway semiring.

Then Rec(S<Aue>) = Recy(S<Aue>).

Proof (Esik, K.). Let 9l = (n,M,L,P) with
(1) M e (S<Auve>)™

(i) I,=g¢, [[=0,2<i<n,
(i) Pj € S<e>, 1<j<n.

Partition M into & — transitions and non
€ — transitions:

M = M() + M], MO . (M,S)S, M1 = Z(M,X)X.
XeA
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o’ (M)

Q,[,

\ |Z (Mp*);; P; = (Mo*P);
J<n

Let ' = (n, M()*M], I, Mo*P) Then
R = [IEMo*Mp)*][My*P] = [I][(Mo*M1)*Mo*][P]=

I(My + M;)*P = IM*P = [|21]|.



Corollary (Schiitzenberger).
Rat(S<Aue>) = Recy(S<Aug>).

Corollary (Kleene).
Rec(B<A>) = Recy(B<Aue>).
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