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Parameterized Prerequisites



Parameterized History

∼ 1990, questioning the basics of classical complexity:
When is it ever the case that the only thing you know about

your problem instance is its number of bits?

 What about finding a second (or third, etc.) dimension to
measure an instance?

 Parameterizations (a.k.a. multivariate analysis (A. Nerode))
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Parameterized Complexity Classes

Figure 1: Parameterized Complexity Classes, parameter k:

FPT→ O(f (k) · nc),
XP→ O(nf(k)),
para-NP→ non-det. O(f (k) · nc)
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Further Parameterized Complexity Classes

Definition (Nondeterministic Turing Machine Computation)
Input: A non-deterministic Turing machine M, q ∈ N, p ∈ N

in unary as well as k ∈ N.
Problem: Does M accept the empty string in ≤ q steps, with

≤ p guessing steps, using ≤ k tape cells?

Definition (Parameterized reduction)
For a parameterized Problem Π , let [Π]FPT denote the problems
reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:
W[1] = [1-Tape-NTMC[q]]FPT

W[2] = [Multi-Tape-NTMC[q]]FPT

WNL = [NTMC[k]]FPT

W[P] = [NTMC[p]]FPT

A[2]: ATM, start in existential state, one switch to universal states

3



Further Parameterized Complexity Classes

Definition (Nondeterministic Turing Machine Computation)
Input: A non-deterministic Turing machine M, q ∈ N, p ∈ N

in unary as well as k ∈ N.
Problem: Does M accept the empty string in ≤ q steps, with

≤ p guessing steps, using ≤ k tape cells?

Definition (Parameterized reduction)
For a parameterized Problem Π , let [Π]FPT denote the problems
reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:
W[1] = [1-Tape-NTMC[q]]FPT

W[2] = [Multi-Tape-NTMC[q]]FPT

WNL = [NTMC[k]]FPT

W[P] = [NTMC[p]]FPT

A[2]: ATM, start in existential state, one switch to universal states

3



Further Parameterized Complexity Classes

Definition (Nondeterministic Turing Machine Computation)
Input: A non-deterministic Turing machine M, q ∈ N, p ∈ N

in unary as well as k ∈ N.
Problem: Does M accept the empty string in ≤ q steps, with

≤ p guessing steps, using ≤ k tape cells?

Definition (Parameterized reduction)
For a parameterized Problem Π , let [Π]FPT denote the problems
reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:
W[1] = [1-Tape-NTMC[q]]FPT

W[2] = [Multi-Tape-NTMC[q]]FPT

WNL = [NTMC[k]]FPT

W[P] = [NTMC[p]]FPT

A[2]: ATM, start in existential state, one switch to universal states

3



Further Parameterized Complexity Classes

Definition (Nondeterministic Turing Machine Computation)
Input: A non-deterministic Turing machine M, q ∈ N, p ∈ N

in unary as well as k ∈ N.
Problem: Does M accept the empty string in ≤ q steps, with

≤ p guessing steps, using ≤ k tape cells?

Definition (Parameterized reduction)
For a parameterized Problem Π , let [Π]FPT denote the problems
reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:
W[1] = [1-Tape-NTMC[q]]FPT

W[2] = [Multi-Tape-NTMC[q]]FPT

WNL = [NTMC[k]]FPT

W[P] = [NTMC[p]]FPT

A[2]: ATM, start in existential state, one switch to universal states

3



Complexity, Visualized. . .

Figure 2: Overview of the complexity classes

A bit neglected in recent years . . .
Focus clearly shifted towards algorithms.
But still of mathematical interest:

Exact classification of concrete problems.
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A First Algebraic Flavor: Subsemigroup Isomorphism

Theorem
(Downey, Fellows 1999) The problem “Given two finite
semigroups G,H, is H isomorphic to some subsemigroup of G?”
is W[1]-complete. Our Parameter: |H|

Membership in W[1]: TM simulation, guessing |H| elements of G

W[1]-hardness by reduction from Clique (as in Booth 1978):
From graph Γ = (V, E), define ◦ on G = V ∪ E ∪ {0} by:

x ◦ y =


x, x = y ∨ (x ∈ E ∧ y ∈ x)

y, x = y ∨ (y ∈ E ∧ x ∈ y)

{x, y}, {x, y} ∈ E
0, otherwise

E.g., Kk yields a semigroup Sk of size k(k + 1)/2 + 1.
Sk is a subsemigroup of G i� Γ contains a k-clique.
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A Famous Combinatorial Question in
Automata Theory



Synchronizing Words

Definition (Synchronizing Word)
A synchronizing word (SW) for a DFA A = (Q,Σ, δ(,q0, F)) is
some wsync ∈ Σ∗, so that there is one synchronizing state
qsync ∈ Q with δ(q,wsync) = qsync for all q ∈ Q.

Definition (Problem DFA-SW)
Input: DFA A, k ∈ N
Problem: Is there a synchronizing word w for A with |w| ≤ k?

DFA-SW NP-complete and W[2]-hard wrt. standard param. k,
DFA Synchronizability (without length bound) poly-time.

Černý’s conjecture: Every DFA with a SW has also one no
longer than (|Q| − 1)2.
Best upper bound O(|Q|3), see STACS 2018, JALC 2019.
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An Example: Černý’s Automaton

Figure 3: Černý’s automaton

Minimum synchronizing word: ba3ba3b
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longer than (|Q| − 1)2.
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DFA With a Sink State

• q sink state i� ∀a ∈ Σ : δ(q,a) = q.

• DFA with one sink state are synchronizable.
The sink state is the synchronizing state.

Definition (DFA-1sink-SW)
Input: DFA A with one sink state, k ∈ N
Problem: Is there a synchronizing word w for A with |w| ≤ k?

Lemma
DFA-1sink-SW ≡FPT DFA-SW.
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Figure 4: Construction applied to Černý’s automaton, w′ = σk−|w|wq1
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Searching a Home for DFA-SW



DFA-SW: WNL, XP and A[2], but W[SAT] ??

Theorem
DFA-SW ∈ WNL ∩W[P] ∩ A[2].

Proof.

1. M (guessing. . . ) writes a word w ∈ Σ, |w| ≤ k, on its tape,
followed by some letter qsync over the alphabet Q.

2. For all q ∈ Q, M first moves its head to the left end of its tape
and then starts reading it from left to right.
For all read a ∈ Σ, M updates its state (transition function).
When reading qsync, M stops if qsync is not the current state.

3. M accepts only after correctly completing Step 2.
⇒ w is synchronizing.
⇒ M accepts λ i� there is a possibility to guess a SW of length
≤ k, making at most (|Q|+ 1)(2k + 1) many steps, visiting at
most k + 1 tape cells, making at most k + 1 guesses.
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How to Factor Monoids



Monoid Factorization

Definition (Monoid Factorization)
Input: A finite set Q, a collection F = {f0, f1, . . . , fm} of

mappings fi : Q→ Q, k ∈ N
Problem: Is there a selection of at most k mappings

fi1 , . . . , fik′ , k′ ≤ k, with ij ∈ {1, . . . ,m} for j =

1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ ?

Standard parameter: k→ W[2]-hard (Cai et al. 1997)
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Back to Černý’s Automaton

Recall:
transformation monoid

fa fb f0
q1 q2 q1 q1
q2 q3 q2 q1
q3 qa q3 q1
q4 q1 q1 q1

Minimum synchronizing word: ba3ba3b
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Putting Pieces Together

Theorem
Monoid Factorization is (parameterized and polynomial-time)
equivalent to DFA-SW.

Proof.
We can reduce Monoid Factorization to DFA-SW.

Conversely, start with DFA-1sink-SW (see Černý example).
Interpreting a given DFA A = (Q,Σ, δ(,q0, F)) with one sink
state sf as a collection FA of |Σ| many mappings fa : Q→ Q, by
setting fa(q) = δ(q,a), we can solve the DFA-SW problem given
by (A, k) by solving the instance (F, k) of Monoid
Factorization, where F = {f0 = sf} ∪ FA and the aim is to
represent the constant target map f0 = sf .
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A New Complexity Class? W[Sync]

DFA-SW seems to be di�cult to classify, but there are (more)
problems with the same complexity.

This motivates the following definition.

W[Sync] := [DFA-Sync]FPT.

Corollary
Monoid Factorization is W[Sync]-complete.

15



Bounded DFA-Intersection



Bounded DFA-Intersection

Definition (Bounded DFA Intersection (BDFAI))
Input: A finite set A of DFA over an alphabet Σ and a

positive integer k.
Problem: Is there a string x ∈ Σk that is accepted by each

DFA in A ?

Known: BDFAI (param. k) is W[2]-hard (Wareham, 2001),
with param. |A| WNL-complete (Guillemot, 2011).

Theorem
Bounded DFA-Intersection, parameterized by the length of
the commonly accepted string, is complete for W[Sync].

16
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A Multivariate Approach To BDFAI

Single Parameters — bivariate

|A| qmax |Σ| k
WNL-c. /∈∗ XP /∈∗ XP W[sync]-c.
Guillemot 2011 (Wareham 2001) Wareham 2001 Bruchertseifer & F 2020

where ∗ assumes P 6= NP and qmax = max{|QA| | A ∈ A}.

Combined Parameters — multivariate

|A|+ qmax |A|+ |Σ| |A|+ k qmax + |Σ| qmax + k |Σ|+ k
FPT WNL-c. W[1]-h. FPT W[2]-h. FPT
Wareham Guillemot Wareham Wareham Wareham Wareham

Notice: FPT-results are close to trivial (quite typical here . . . )
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Proving Membership in W[1]

Theorem
BDFAI, param. by |A|+ k, is W[1]-complete.

Revisit the Guess & Check paradigm:

1. Guess a word w from (ΣQ|A|)k.
2. Check if with these letters from Σ, the DFAs can move

from state to state as guessed.

Observe:

• Only (|A|+ 1) · k many letters are written on the tape.
• The checking can be done in f (|A|+ k) time.

18
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W[Sync] – What Is Inside?



Longest Common Subsequence

Definition (Longest Common Subsequence)
Input: The input consists of ` strings x1, . . . , x` over Σ.
Problem: Find a string w ∈ Σk occurring in each of the xi as a

subsequence.

Known: Longest Common Subsequence with param. k is W[2]-hard,
wrt. (k, `) W[1]-complete (Bodlaender et al., 1995),
with param. ` WNL-complete (Guillemot, 2011)

Build a DFA Ai for each xi that accepts all subsequences of xi.
 One can solve a Longest Common Subsequence instance with a
Bounded DFA-Intersection instance, preserving our parameter k.
(Wareham, 2001)
Theorem
Longest Common Subsequence ∈ W[Sync].

W[Sync]-hardness open
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Constraint Satisfaction Sitting Between

Definition (CSP CNF Satisfiability)
Input: CSP CNF formula ϕ on k variables x1, . . . , xk over

a finite universe U, atomic sentences xi = u for
1 ≤ i ≤ k, u ∈ U, and a CNF built from these
atomic sentences.

Problem: Is ϕ satisfiable?

Our parameter: k

Lemma
CSP CNF Satisfiability ≤FPT Longest Common Subsequence

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995
Lemma
CSP CNF Satisfiability is W[2]-hard.

Idea: Reduce from Hitting Set

20



Constraint Satisfaction Sitting Between

Definition (CSP CNF Satisfiability)
Input: CSP CNF formula ϕ on k variables x1, . . . , xk over

a finite universe U, atomic sentences xi = u for
1 ≤ i ≤ k, u ∈ U, and a CNF built from these
atomic sentences.

Problem: Is ϕ satisfiable?

Our parameter: k

Lemma
CSP CNF Satisfiability ≤FPT Longest Common Subsequence

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995

Lemma
CSP CNF Satisfiability is W[2]-hard.

Idea: Reduce from Hitting Set

20



Constraint Satisfaction Sitting Between

Definition (CSP CNF Satisfiability)
Input: CSP CNF formula ϕ on k variables x1, . . . , xk over

a finite universe U, atomic sentences xi = u for
1 ≤ i ≤ k, u ∈ U, and a CNF built from these
atomic sentences.

Problem: Is ϕ satisfiable?

Our parameter: k

Lemma
CSP CNF Satisfiability ≤FPT Longest Common Subsequence

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995
Lemma
CSP CNF Satisfiability is W[2]-hard.

Idea: Reduce from Hitting Set
20



Back to Algebra: Permutation Group Factorization

Special case of Monoid Factorization if all fi are bijections.

 Permutation Group Factorization ∈ W[sync].

Theorem
(Cai et al. 1997) Permutation Group Factorization is W[1]-hard.

Reduction from Perfect Code.

Similar proof of W[1]-hardness for Sized Subset Sum:
Given positive integers x0, x1, . . . , xm, and integer k, select k integers
from x1, . . . , xm that sum up to x0.

21
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W[Sync] – What Is Outside?



Non-Universality For NFAs

Definition (Bounded NFA Non-Universality)
Input: NFA A with input alphabet Σ, k ∈ N.
Problem: Is there a word w ∈ Σk not accepted by A?

Lemma

Bounded NFA Non-Universality is W[Sync]-hard.

Lemma

Bounded NFA Non-Universality ∈ A[2].

A[2]-Idea: Guess word w ∈ Σk, check if all paths through NFA reject.
For W[P]: Do powerset construction on the tape, updating additional
|Q| bits when digesting the guessed word.
Open problem with WNL

22



Non-Universality For NFAs

Definition (Bounded NFA Non-Universality)
Input: NFA A with input alphabet Σ, k ∈ N.
Problem: Is there a word w ∈ Σk not accepted by A?

Lemma

Bounded NFA Non-Universality is W[Sync]-hard.

Lemma

Bounded NFA Non-Universality ∈ A[2].

A[2]-Idea: Guess word w ∈ Σk, check if all paths through NFA reject.
For W[P]: Do powerset construction on the tape, updating additional
|Q| bits when digesting the guessed word.
Open problem with WNL

22



Non-Universality For NFAs

Definition (Bounded NFA Non-Universality)
Input: NFA A with input alphabet Σ, k ∈ N.
Problem: Is there a word w ∈ Σk not accepted by A?

Lemma

Bounded NFA Non-Universality is W[Sync]-hard.

Lemma

Bounded NFA Non-Universality ∈ A[2].

A[2]-Idea: Guess word w ∈ Σk, check if all paths through NFA reject.
For W[P]: Do powerset construction on the tape, updating additional
|Q| bits when digesting the guessed word.
Open problem with WNL

22



Non-Universality For NFAs

Definition (Bounded NFA Non-Universality)
Input: NFA A with input alphabet Σ, k ∈ N.
Problem: Is there a word w ∈ Σk not accepted by A?

Lemma

Bounded NFA Non-Universality is W[Sync]-hard.

Lemma

Bounded NFA Non-Universality ∈ A[2].

A[2]-Idea: Guess word w ∈ Σk, check if all paths through NFA reject.
For W[P]: Do powerset construction on the tape, updating additional
|Q| bits when digesting the guessed word.
Open problem with WNL

22



Bounded NFA-Intersection

Main parameters: k: length of the common string, or |A|

Lemma

Bounded NFA-Intersection (wrt. k) is W[Sync]-hard.

Lemma
Bounded NFA-Intersection (wrt. k) is in WNL.

Lemma

Bounded NFA-Intersection (wrt. k) is in A[3].

Open: What about W[P] or A[2]?
Theorem
(Ho�mann) Bounded NFA-Intersection (wrt. |A|) is
co-W[2]-hard.
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A Queer Problem: Small Synchronizable Sub-automata

Definition
DFA-MSS (Minimum synchronizable sub-automaton)]
Input: DFA A with input alphabet Σ, k ∈ N.
Problem: Is there a sub-alphabet Σ̂ ⊆ Σ, |Σ̂| ≤ k, such

that the restriction of A to Σ̂ is synchonizable,
i.e., is there a synchronizing word over Σ̂?

The NP-hardness proof by Türker and Yenegün (2015) gives:

Corollary
DFA-MSS is W[2]-hard.

Theorem
DFA-MSS ∈ WNL ∩W[P].

Open: Relation to W[Sync]
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Summary

Figure 5: Overview of the complexity classes

Observe: Classes W[Sync] and WNL mostly inhabited by
combinatorial formal language problems.

As W[Sync] ⊆ para-NP, it is “unlikely” that W[Sync] = A[2].
Then, Σ

p
2 -problems would as “easy” as SAT, see PhD of R. de Haan (Vienna, 2016).

Still, many questions are open, including positioning the
co-W-classes.
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Finally . . .

26


	Parameterized Prerequisites
	A Famous Combinatorial Question in Automata Theory
	Searching a Home for DFA-SW
	How to Factor Monoids
	Bounded DFA-Intersection
	W[Sync] – What Is Inside?
	W[Sync] – What Is Outside?

