Strange Parameterized Complexity Results of Natural Combinatorial Problems in Automata Theory and Algebra

Henning Fernau June 22nd, 2021

University of Trier

Parameterized Prerequisites

 \rightsquigarrow What about finding a second (or third, etc.) dimension to measure an instance?

→ What about finding a second (or third, etc.) dimension to measure an instance?

~ Parameterizations (a.k.a. multivariate analysis (A. Nerode))

→ What about finding a second (or third, etc.) dimension to measure an instance?

~ Parameterizations (a.k.a. multivariate analysis (A. Nerode))

Parameterized Complexity Classes

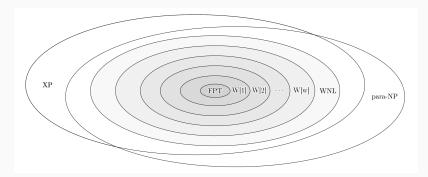


Figure 1: Parameterized Complexity Classes, parameter k:

$$egin{aligned} \mathsf{FPT} & o \mathcal{O}(f(k) \cdot n^{\mathsf{c}}), \ \mathsf{XP} & o \mathcal{O}(n^{f(k)}), \ \mathsf{para-NP} & o \mathsf{non-det.} \ \mathcal{O}(f(k) \cdot n^{\mathsf{c}}) \end{aligned}$$

Definition (Nondeterministic Turing Machine Computation)

- Input: A non-deterministic Turing machine $M, q \in \mathbb{N}, p \in \mathbb{N}$ in unary as well as $k \in \mathbb{N}$.
- Problem: Does *M* accept the empty string in $\leq q$ steps, with $\leq p$ guessing steps, using $\leq k$ tape cells?

Definition (Nondeterministic Turing Machine Computation)

Input: A non-deterministic Turing machine $M, q \in \mathbb{N}, p \in \mathbb{N}$ in unary as well as $k \in \mathbb{N}$.

Problem: Does *M* accept the empty string in $\leq q$ steps, with $\leq p$ guessing steps, using $\leq k$ tape cells?

Definition (Parameterized reduction)

For a parameterized Problem Π , let $[\Pi]^{FPT}$ denote the problems reducible to Π in FPT time, obeying the parameterization.

Definition (Nondeterministic Turing Machine Computation)

Input: A non-deterministic Turing machine $M, q \in \mathbb{N}, p \in \mathbb{N}$ in unary as well as $k \in \mathbb{N}$.

Problem: Does *M* accept the empty string in $\leq q$ steps, with $\leq p$ guessing steps, using $\leq k$ tape cells?

Definition (Parameterized reduction)

For a parameterized Problem Π , let $[\Pi]^{FPT}$ denote the problems reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have: $W[1] = [1-TAPE-NTMC[q]]^{FPT}$ $W[2] = [MULTI-TAPE-NTMC[q]]^{FPT}$ $WNL = [NTMC[k]]^{FPT}$ $W[P] = [NTMC[p]]^{FPT}$

Definition (Nondeterministic Turing Machine Computation)

Input: A non-deterministic Turing machine $M, q \in \mathbb{N}, p \in \mathbb{N}$ in unary as well as $k \in \mathbb{N}$.

Problem: Does *M* accept the empty string in $\leq q$ steps, with $\leq p$ guessing steps, using $\leq k$ tape cells?

Definition (Parameterized reduction)

For a parameterized Problem Π , let $[\Pi]^{FPT}$ denote the problems reducible to Π in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:

 $W[1] = [1-TAPE-NTMC[q]]^{FPT}$

$$W[2] = [MULTI-TAPE-NTMC[q]]^{FPT}$$

$$WNL = [NTMC[k]]^{FPT}$$

$$W[P] = [NTMC[p]]^{FPT}$$

A[2]: ATM, start in existential state, one switch to universal states

Complexity, Visualized....

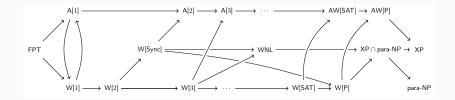


Figure 2: Overview of the complexity classes

Complexity, Visualized...

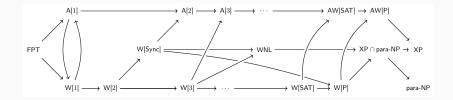


Figure 2: Overview of the complexity classes

A bit neglected in recent years ... Focus clearly shifted towards algorithms. But still of mathematical interest:

Exact classification of concrete problems.

(Downey, Fellows 1999) The problem "Given two finite semigroups G, H, is H isomorphic to some subsemigroup of G?" is W[1]-complete. Our Parameter: |H|

(Downey, Fellows 1999) The problem "Given two finite semigroups G, H, is H isomorphic to some subsemigroup of G?" is W[1]-complete. Our Parameter: |H|

Membership in W[1]: TM simulation, guessing |H| elements of G

(Downey, Fellows 1999) The problem "Given two finite semigroups G, H, is H isomorphic to some subsemigroup of G?" is W[1]-complete. Our Parameter: |H|

Membership in W[1]: TM simulation, guessing |H| elements of G

W[1]-hardness by reduction from CLIQUE (as in Booth 1978): From graph $\Gamma = (V, E)$, define \circ on $G = V \cup E \cup \{0\}$ by:

$$x \circ y = \begin{cases} x, & x = y \lor (x \in E \land y \in x) \\ y, & x = y \lor (y \in E \land x \in y) \\ \{x, y\}, & \{x, y\} \in E \\ 0, & \text{otherwise} \end{cases}$$

E.g., K_k yields a semigroup S_k of size k(k + 1)/2 + 1. S_k is a subsemigroup of G iff Γ contains a k-clique.

A Famous Combinatorial Question in Automata Theory

Definition (Synchronizing Word) A synchronizing word (SW) for a DFA $A = (Q, \Sigma, \delta(, q_0, F))$ is some $w_{sync} \in \Sigma^*$, so that there is one synchronizing state $q_{sync} \in Q$ with $\delta(q, w_{sync}) = q_{sync}$ for all $q \in Q$.

Definition (Problem DFA-SW)

 Input:
 DFA A, $k \in \mathbb{N}$

 Problem:
 Is there a synchronizing word w for A with $|w| \le k$?

 Base of the synchronizing word w for A with $|w| \le k$?

An Example: Černý's Automaton

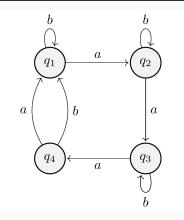


Figure 3: Černý's automaton

An Example: Černý's Automaton

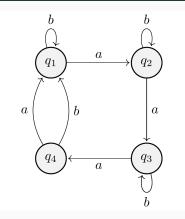


Figure 3: Černý's automaton

Minimum synchronizing word: ba³ba³b

Definition (Synchronizing Word) A synchronizing word (SW) for a DFA $A = (Q, \Sigma, \delta(, q_0, F))$ is some $w_{sync} \in \Sigma^*$, so that there is one synchronizing state $q_{sync} \in Q$ with $\delta(q, w_{sync}) = q_{sync}$ for all $q \in Q$.

Definition (DFA-SW)

Input: DFA A, $k \in \mathbb{N}$

Problem: Is there a synchronizing word *w* for A with $|w| \le k$?

DFA-SW NP-complete and W[2]-hard wrt. standard param. *k*, DFA SYNCHRONIZABILITY (without length bound) poly-time.

Černý's conjecture (1964): Every DFA with a SW has also one no longer than $(|Q| - 1)^2$.

Best upper bound $\mathcal{O}(|Q|^3)$, see STACS 2018, JALC 2019.

• $q \text{ sink state iff } \forall a \in \Sigma : \delta(q, a) = q.$

- $q \text{ sink state iff } \forall a \in \Sigma : \delta(q, a) = q.$
- DFA with one sink state are synchronizable. The sink state is the synchronizing state.

- $q \text{ sink state iff } \forall a \in \Sigma : \delta(q, a) = q.$
- DFA with one sink state are synchronizable. The sink state is the synchronizing state.

Definition (DFA-1SINK-SW)

Input: DFA A with one sink state, $k \in \mathbb{N}$

Problem: Is there a synchronizing word *w* for A with $|w| \le k$?

- $q \text{ sink state iff } \forall a \in \Sigma : \delta(q, a) = q.$
- DFA with one sink state are synchronizable. The sink state is the synchronizing state.

Definition (DFA-1SINK-SW)

Input: DFA A with one sink state, $k \in \mathbb{N}$

Problem: Is there a synchronizing word *w* for A with $|w| \le k$?

Lemma

DFA-1SINK-SW $\equiv_{FPT} DFA$ -SW.

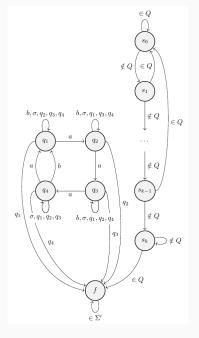


Figure 4: Construction applied to Černý's automaton, $w' = \sigma^{k-|w|} w q_1$

Searching a Home for DFA-SW

Theorem $DFA-SW \in WNL \cap W[P] \cap A[2].$

```
Theorem DFA-SW \in WNL \cap W[P] \cap A[2].
```

Proof.

1. *M* (guessing...) writes a word $w \in \Sigma$, $|w| \le k$, on its tape, followed by some letter q_{sync} over the alphabet *Q*.

```
Theorem DFA-SW \in WNL \cap W[P] \cap A[2].
```

Proof.

- 1. *M* (guessing...) writes a word $w \in \Sigma$, $|w| \le k$, on its tape, followed by some letter q_{sync} over the alphabet *Q*.
- For all q ∈ Q, M first moves its head to the left end of its tape and then starts reading it from left to right.
 For all read a ∈ Σ, M updates its state (transition function).
 When reading q_{sync}, M stops if q_{sync} is not the current state.

```
Theorem DFA-SW \in WNL \cap W[P] \cap A[2].
```

Proof.

- 1. *M* (guessing...) writes a word $w \in \Sigma$, $|w| \le k$, on its tape, followed by some letter q_{sync} over the alphabet *Q*.
- For all q ∈ Q, M first moves its head to the left end of its tape and then starts reading it from left to right.
 For all read a ∈ Σ, M updates its state (transition function).
 When reading q_{sync}, M stops if q_{sync} is not the current state.
- 3. *M* accepts only after correctly completing Step 2.
 - \Rightarrow w is synchronizing.

 $\Rightarrow M \text{ accepts } \lambda \text{ iff there is a possibility to guess a SW of length} \\ \le k, \text{ making at most } (|Q| + 1)(2k + 1) \text{ many steps, visiting at} \\ \text{most } k + 1 \text{ tape cells, making at most } k + 1 \text{ guesses.} \qquad \square$

How to Factor Monoids

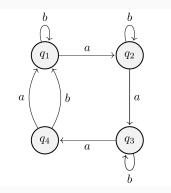
Definition (MONOID FACTORIZATION)

Input: A finite set Q, a collection $F = \{f_0, f_1, \dots, f_m\}$ of mappings $f_i : Q \to Q$, $k \in \mathbb{N}$

Problem: Is there a selection of at most *k* mappings $f_{i_1}, \ldots, f_{i_{k'}}$, $k' \leq k$, with $i_j \in \{1, \ldots, m\}$ for $j = 1, \ldots, k'$, such that $f_0 = f_{i_1} \circ f_{i_2} \circ \cdots \circ f_{i_{k'}}$?

Standard parameter: $k \rightarrow W[2]$ -hard (Cai et al. 1997)

Back to Černý's Automaton



Recall: transformation monoid

	fa	f _b	fo
q ₁	q ₂	q ₁	q ₁
<i>q</i> ₂	q ₃	q ₂	q ₁
q ₃	q a	q ₃	q 1
q_4	q 1	q ₁	q ₁

Minimum synchronizing word: ba³ba³b

MONOID FACTORIZATION is (parameterized and polynomial-time) equivalent to DFA-SW.

Proof.

We can reduce MONOID FACTORIZATION to DFA-SW.

MONOID FACTORIZATION is (parameterized and polynomial-time) equivalent to DFA-SW.

Proof.

We can reduce MONOID FACTORIZATION to DFA-SW.

Conversely, start with DFA-1SINK-SW (see Černý example). Interpreting a given DFA $A = (Q, \Sigma, \delta(, q_0, F))$ with one sink state s_f as a collection F_A of $|\Sigma|$ many mappings $f_a : Q \to Q$, by setting $f_a(q) = \delta(q, a)$, we can solve the DFA-SW problem given by (A, k) by solving the instance (F, k) of MONOID FACTORIZATION, where $F = \{f_0 = s_f\} \cup F_A$ and the aim is to represent the constant target map $f_0 = s_f$. DFA-SW seems to be difficult to classify, but there are (more) problems with the same complexity.

This motivates the following definition.

 $W[Sync] := [DFA-SYNC]^{FPT}$.

Corollary MONOID FACTORIZATION is W[Sync]-complete.

BOUNDED DFA-INTERSECTION

Definition (BOUNDED DFA INTERSECTION (BDFAI))

- Input: A finite set A of DFA over an alphabet Σ and a positive integer k.
- Problem: Is there a string $x \in \Sigma^k$ that is accepted by each DFA in \mathcal{A} ?

Known: BDFAI (param. k) is W[2]-hard (Wareham, 2001), with param. |A| WNL-complete (Guillemot, 2011).

Definition (BOUNDED DFA INTERSECTION (BDFAI))

- Input: A finite set A of DFA over an alphabet Σ and a positive integer k.
- Problem: Is there a string $x \in \Sigma^k$ that is accepted by each DFA in \mathcal{A} ?
- Known: BDFAI (param. k) is W[2]-hard (Wareham, 2001), with param. |A| WNL-complete (Guillemot, 2011).

Theorem

BOUNDED DFA-INTERSECTION, parameterized by the length of the commonly accepted string, is complete for W[Sync].

Definition (BOUNDED DFA INTERSECTION (BDFAI))

- Input: A finite set A of DFA over an alphabet Σ and a positive integer k.
- Problem: Is there a string $x \in \Sigma^k$ that is accepted by each DFA in \mathcal{A} ?
- Known: BDFAI (param. k) is W[2]-hard (Wareham, 2001), with param. |A| WNL-complete (Guillemot, 2011).

Theorem

BOUNDED DFA-INTERSECTION, parameterized by the length of the commonly accepted string, is complete for W[Sync].

A Multivariate Approach To BDFAI

Single Parameters — bivariate

where * assumes $P \neq NP$ and $q_{max} = max\{|Q_A| \mid A \in A\}$.

A Multivariate Approach To BDFAI

Single Parameters — bivariate

where * assumes $P \neq NP$ and $q_{max} = max\{|Q_A| \mid A \in A\}$.

Combined Parameters - multivariate

$ \mathcal{A} + q_{max}$	$ \mathcal{A} + \Sigma $	$ \mathcal{A} + k$	$q_{\max} + \Sigma $	$q_{\max} + k$	$ \Sigma + k$
FPT	WNL-c.	W[1] -h.	FPT	W[2] <mark>-h.</mark>	FPT
Wareham	Guillemot	Wareham	Wareham	Wareham	Wareham

A Multivariate Approach To BDFAI

Single Parameters — bivariate

where * assumes $P \neq NP$ and $q_{max} = max\{|Q_A| \mid A \in A\}$.

Combined Parameters - multivariate

$ \mathcal{A} + q_{max}$	$ \mathcal{A} + \Sigma $	$ \mathcal{A} + k$	$q_{\max} + \Sigma $	$q_{\max} + k$	$ \Sigma + k$
FPT	WNL-c.	W[1] <mark>-h.</mark>	FPT	W[2] <mark>-h.</mark>	FPT
Wareham	Guillemot	Wareham	Wareham	Wareham	Wareham

Notice: FPT-results are close to trivial (quite typical here ...)

Theorem BDFAI, param. by |A| + k, is W[1]-complete.

Theorem

BDFAI, param. by |A| + k, is W[1]-complete.

Revisit the **Guess & Check** paradigm:

- 1. Guess a word *w* from $(\Sigma Q^{|\mathcal{A}|})^k$.
- 2. Check if with these letters from Σ , the DFAs can move from state to state as guessed.

Theorem

BDFAI, param. by |A| + k, is W[1]-complete.

Revisit the **Guess & Check** paradigm:

- 1. Guess a word *w* from $(\Sigma Q^{|\mathcal{A}|})^k$.
- 2. Check if with these letters from Σ , the DFAs can move from state to state as guessed.

Observe:

- Only $(|\mathcal{A}| + 1) \cdot k$ many letters are written on the tape.
- The checking can be done in $f(|\mathcal{A}| + k)$ time.

W[Sync] – What Is Inside?

LONGEST COMMON SUBSEQUENCE

Definition (LONGEST COMMON SUBSEQUENCE)

- Input: The input consists of ℓ strings x_1, \ldots, x_ℓ over Σ .
- Problem: Find a string $w \in \Sigma^k$ occurring in each of the x_i as a subsequence.

Known: LONGEST COMMON SUBSEQUENCE with param. k is W[2]-hard, wrt. (k, ℓ) W[1]-complete (Bodlaender et al., 1995), with param. ℓ WNL-complete (Guillemot, 2011)

Definition (LONGEST COMMON SUBSEQUENCE)

- Input: The input consists of ℓ strings x_1, \ldots, x_ℓ over Σ .
- Problem: Find a string $w \in \Sigma^k$ occurring in each of the x_i as a subsequence.

Known: LONGEST COMMON SUBSEQUENCE with param. k is W[2]-hard, wrt. (k, ℓ) W[1]-complete (Bodlaender et al., 1995), with param. ℓ WNL-complete (Guillemot, 2011)

Build a DFA A_i for each x_i that accepts all subsequences of x_i . \rightsquigarrow One can solve a LONGEST COMMON SUBSEQUENCE instance with a BOUNDED DFA-INTERSECTION instance, preserving our parameter k. (Wareham, 2001)

Theorem

LONGEST COMMON SUBSEQUENCE \in W[Sync].

Definition (LONGEST COMMON SUBSEQUENCE)

- Input: The input consists of ℓ strings x_1, \ldots, x_ℓ over Σ .
- Problem: Find a string $w \in \Sigma^k$ occurring in each of the x_i as a subsequence.

Known: LONGEST COMMON SUBSEQUENCE with param. k is W[2]-hard, wrt. (k, ℓ) W[1]-complete (Bodlaender et al., 1995), with param. ℓ WNL-complete (Guillemot, 2011)

Build a DFA A_i for each x_i that accepts all subsequences of x_i . \rightsquigarrow One can solve a LONGEST COMMON SUBSEQUENCE instance with a BOUNDED DFA-INTERSECTION instance, preserving our parameter k. (Wareham, 2001)

Theorem

LONGEST COMMON SUBSEQUENCE \in W[Sync].

W[Sync]-hardness open

Constraint Satisfaction Sitting Between

Definition (CSP CNF SATISFIABILITY)

Input: CSP CNF formula φ on k variables x_1, \ldots, x_k over a finite universe U, atomic sentences $x_i = u$ for $1 \le i \le k, u \in U$, and a CNF built from these atomic sentences.

Problem: Is φ satisfiable?

Our parameter: *k*

Constraint Satisfaction Sitting Between

Definition (CSP CNF SATISFIABILITY)

Input: CSP CNF formula φ on k variables x_1, \ldots, x_k over a finite universe U, atomic sentences $x_i = u$ for $1 \le i \le k, u \in U$, and a CNF built from these atomic sentences.

Problem: Is φ satisfiable?

Our parameter: k

Lemma

CSP CNF Satisfiability \leq_{FPT} Longest Common Subsequence

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995

Definition (CSP CNF SATISFIABILITY)

Input: CSP CNF formula φ on k variables x_1, \ldots, x_k over a finite universe U, atomic sentences $x_i = u$ for $1 \le i \le k, u \in U$, and a CNF built from these atomic sentences.

Problem: Is φ satisfiable?

Our parameter: k

Lemma

CSP CNF Satisfiability \leq_{FPT} Longest Common Subsequence

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995

Lemma CSP CNF SATISFIABILITY is W[2]-hard.

Idea: Reduce from HITTING SET

 \rightsquigarrow Permutation Group Factorization \in W[sync].

 \rightsquigarrow Permutation Group Factorization \in W[sync].

Theorem

(Cai et al. 1997) Permutation Group Factorization is W[1]-hard.

Reduction from Perfect Code.

 \rightsquigarrow Permutation Group Factorization \in W[sync].

Theorem

(Cai et al. 1997) Permutation Group Factorization is W[1]-hard.

Reduction from Perfect Code.

Similar proof of W[1]-hardness for SIZED SUBSET SUM: Given positive integers x_0, x_1, \ldots, x_m , and integer k, select k integers from x_1, \ldots, x_m that sum up to x_0 .

W[Sync] – What Is Outside?

Definition (BOUNDED NFA NON-UNIVERSALITY)

- Input: NFA A with input alphabet Σ , $k \in \mathbb{N}$.
- Problem: Is there a word $w \in \Sigma^k$ not accepted by A?

Definition (BOUNDED NFA NON-UNIVERSALITY)

- Input: NFA A with input alphabet Σ , $k \in \mathbb{N}$.
- Problem: Is there a word $w \in \Sigma^k$ not accepted by A?

Lemma

BOUNDED NFA NON-UNIVERSALITY is W[Sync]-hard.

Definition (BOUNDED NFA NON-UNIVERSALITY)

Input: NFA A with input alphabet Σ , $k \in \mathbb{N}$.

Problem: Is there a word $w \in \Sigma^k$ not accepted by A?

Lemma

BOUNDED NFA NON-UNIVERSALITY is W[Sync]-hard.

Lemma

BOUNDED NFA NON-UNIVERSALITY $\in A[2]$.

Definition (BOUNDED NFA NON-UNIVERSALITY)

Input: NFA A with input alphabet Σ , $k \in \mathbb{N}$.

Problem: Is there a word $w \in \Sigma^k$ not accepted by A?

Lemma

BOUNDED NFA NON-UNIVERSALITY is W[Sync]-hard.

Lemma

BOUNDED NFA NON-UNIVERSALITY $\in A[2]$.

A[2]-Idea: Guess word $w \in \Sigma^k$, check if all paths through NFA reject. For W[P]: Do powerset construction on the tape, updating additional |Q| bits when digesting the guessed word. Open problem with WNL

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is W[Sync]-hard.

Lemma

Bounded NFA-Intersection (wrt. k) is in WNL.

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is W[Sync]-hard.

Lemma

Bounded NFA-Intersection (wrt. k) is in WNL.

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is in A[3].

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is W[Sync]-hard.

Lemma

Bounded NFA-Intersection (wrt. k) is in WNL.

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is in A[3].

Open: What about W[P] or A[2]?

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is W[Sync]-hard.

Lemma

Bounded NFA-Intersection (wrt. k) is in WNL.

Lemma

BOUNDED NFA-INTERSECTION (wrt. k) is in A[3].

Open: What about W[P] or A[2]?

Theorem (Hoffmann) BOUNDED NFA-INTERSECTION (wrt. |A|) is co-W[2]-hard.

DefinitionDFA-MSS (Minimum synchronizable sub-automaton)]Input:DFA A with input alphabet $\Sigma, k \in \mathbb{N}$.Problem:In there is only alphabet $\hat{\Sigma} \subset \Sigma$ is $\hat{\Sigma} = \hat{\Sigma}$.

Problem: Is there a sub-alphabet $\hat{\Sigma} \subseteq \Sigma$, $|\hat{\Sigma}| \leq k$, such that the restriction of A to $\hat{\Sigma}$ is synchonizable, i.e., is there a synchronizing word over $\hat{\Sigma}$?

DefinitionDFA-MSS (Minimum synchronizable sub-automaton)]Input:DFA A with input alphabet Σ , $k \in \mathbb{N}$.

Problem: Is there a sub-alphabet $\hat{\Sigma} \subseteq \Sigma$, $|\hat{\Sigma}| \leq k$, such that the restriction of A to $\hat{\Sigma}$ is synchonizable, i.e., is there a synchronizing word over $\hat{\Sigma}$?

The NP-hardness proof by Türker and Yenegün (2015) gives:

Corollary *DFA-MSS is W[2]-hard.*

DefinitionDFA-MSS (Minimum synchronizable sub-automaton)]Input:DFA A with input alphabet Σ , $k \in \mathbb{N}$.

Problem: Is there a sub-alphabet $\hat{\Sigma} \subseteq \Sigma$, $|\hat{\Sigma}| \leq k$, such that the restriction of A to $\hat{\Sigma}$ is synchonizable, i.e., is there a synchronizing word over $\hat{\Sigma}$?

The NP-hardness proof by Türker and Yenegün (2015) gives:

Corollary *DFA-MSS is W[2]-hard.*

Theorem $DFA-MSS \in WNL \cap W[P]$.

Open: Relation to W[Sync]

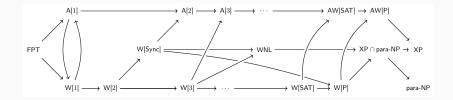


Figure 5: Overview of the complexity classes

<u>Observe:</u> Classes W[Sync] and WNL mostly inhabited by combinatorial formal language problems.

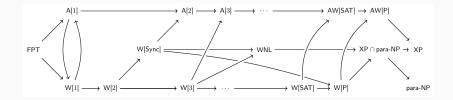


Figure 5: Overview of the complexity classes

<u>Observe:</u> Classes W[Sync] and WNL mostly inhabited by combinatorial formal language problems.

As $W[Sync] \subseteq para-NP$, it is "unlikely" that W[Sync] = A[2].

Then, Σ_2^p -problems would as "easy" as SAT, see PhD of R. de Haan (Vienna, 2016).

Still, many questions are open, including positioning the co-W-classes.

Finally ...

Wishing you a very *Happy Birthday*. May you have many more years of happiness and success ahead!

