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Parameterized Complexity Classes
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Figure 1: Parameterized Complexity Classes, parameter k:

FPT — O(f(R) - n%),
XP — O(nf(R),
para-NP — non-det. O(f(R) - n)
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Definition (NONDETERMINISTIC TURING MACHINE COMPUTATION)
Input: A non-deterministic Turing machineM,qg e N, p € N
in unary as well as k € N.

Problem: Does M accept the empty string in < g steps, with
< p guessing steps, using < k tape cells?

Definition (Parameterized reduction)
For a parameterized Problem 17, let [I7]™T denote the problems

reducible to IT in FPT time, obeying the parameterization.

According to Cesati 2003, Guillemot 2011, we have:

W[1] = [1-TAPE-NTMC][q]]"P"

W[2] = [MULTI-TAPE-NTMC[q]]F""

WNL = [NTMC[K]]FPT

W[P] = [NTMC[p]]*PT

A[2]: ATM, start in existential state, one switch to universal states
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A bit neglected in recent years ...
Focus clearly shifted towards algorithms.
But still of mathematical interest:

Exact classification of concrete problems.
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A First Algebraic Flavor: SUBSEMIGROUP ISOMORPHISM

Theorem
(Downey, Fellows 1999) The problem “Given two finite

semigroups G, H, is H isomorphic to some subsemigroup of G?”
is W[1]-complete. Our Parameter: |H|

Membership in W[1]: TM simulation, guessing |H| elements of G
W[1]-hardness by reduction from CLIQUE (as in Booth 1978):
From graph I' = (V, E), defineocon G =V UE U {0} by:

X, X=yV((XeEANYyEX)

y, x=yV(yeEAxey)

x.v} {xy} ek
0, otherwise

Xoy=

E.g., Ki yields a semigroup Sy of size R(R+1)/2 + 1.
Sy is a subsemigroup of G iff ' contains a k-clique.



A Famous Combinatorial Question in
Automata Theory



Synchronizing Words

Definition (Synchronizing Word)
A synchronizing word (SW) fora DFAA = (Q, %, 5(, qo, F)) is

some Wsync € X, so that there is one synchronizing state
Gsync € Q With (g, Wsync) = gsync for all g € Q.

Definition (Problem DFA-SW)
Input: DFAA kR eN

Problem: Is there a synchronizing word w for A with |w| < k?
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Synchronizing Words

Definition (Synchronizing Word)
A synchronizing word (SW) fora DFAA = (Q, %, 5(, qo, F)) is

some Wsync € X, so that there is one synchronizing state

Gsync € Q With (g, Wsync) = gsync for all g € Q.

Definition (DFA-SW)

Input: DFAA kR eN

Problem: Is there a synchronizing word w for A with |w| < k?

DFA-SW NP-complete and W[2]-hard wrt. standard param. k,
DFA SYNCHRONIZABILITY (without length bound) poly-time.

Cerny's conjecture (1964): Every DFA with a SW has also one no
longer than (]Q] — 1)
Best upper bound O(|Q[?), see STACS 2018, JALC 2019.
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DFA With a Sink State

« g sink state iff va € X : 6(q,a) = q.

 DFA with one sink state are synchronizable.
The sink state is the synchronizing state.

Definition (DFA-1SINK-SW)
Input: DFA A with one sink state, k € N

Problem: Is there a synchronizing word w for A with |w| < k?

Lemma
DFA-1SINK-SW =gpr DFA-SWV.



b0, 42,03, 42

N\ o,q1,q2,03

qa

Figure 4: Construction applied to Cerny’s automaton, w’ = o*~"lwg,

a \w b
|
\ E \'\
| ?@\ |

<é>//

ey

¢Qle@
s1 \‘
\
b,0,41,43:q4
(3% co
X \
a £Q
671
b.0,q1,92, 41 ‘ #Q
[13‘ .
| se JIOEQ

10



Searching a Home for DFA-SW
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DFA-SW: WNL, XP and A[2], but W[SAT] ??

Theorem
DFA-SW e WNL N W[P] N A[2].

Proof.

1. M (guessing...) writes a word w € ¥, |w| < k, on its tape,
followed by some letter gsync Over the alphabet Q.

2. Forall g € Q, M first moves its head to the left end of its tape
and then starts reading it from left to right.
For all read a € ¥, M updates its state (transition function).
When reading Gsync, M stops if gsync is not the current state.

3. M accepts only after correctly completing Step 2.
= w is synchronizing.
= M accepts )\ iff there is a possibility to guess a SW of length
< R, making at most (|Q| + 1)(2k + 1) many steps, visiting at
most k + 1 tape cells, making at most k + 1 guesses.

1"



How to Factor Monoids




MONOID FACTORIZATION

Definition (MONOID FACTORIZATION)
Input: A finite set Q, a collection F = {fo,f1,...,fm} of

mappingsfi: Q -+ Q,Re N

Problem: Is there a selection of at most kR mappings
fir-osfiy B < Rowith i; € {1,...,m} for j =
1,...,R,suchthatfo =f; ofj,0---of ?

Standard parameter: R — W[2]-hard (Cai et al. 1997)

12



Back to Cerny’s Automaton

Recall:
8 a @ transformation monoid
fa [ fo | fo
a b a G192 |G| G

421 Q3 | G2 || Gn
@ a 9 g3 | 9a | 93 || G-
4y | G1 | 41| G4

Minimum synchronizing word: ba3ba3b

13



Putting Pieces Together

Theorem
MoONOID FACTORIZATION is (parameterized and polynomial-time)

equivalent to DFA-SW.

Proof.
We can reduce MONOID FACTORIZATION to DFA-SW.
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Putting Pieces Together

Theorem
MoONOID FACTORIZATION is (parameterized and polynomial-time)

equivalent to DFA-SW.

Proof.
We can reduce MONOID FACTORIZATION to DFA-SW.

Conversely, start with DFA-1SINK-SW (see Cerny example).
Interpreting a given DFAA = (Q, X, 6(, 9o, F)) with one sink
state s as a collection F4 of [X| many mappings fo : Q — Q, by
setting f,(q) = 6(q, a), we can solve the DFA-SW problem given
by (A, R) by solving the instance (F, k) of MONOID
FACTORIZATION, Where F = {fo = s¢} U F4 and the aim is to
represent the constant target map fo = s;. O]

14



A New Complexity Class? W[Sync]

DFA-SW seems to be difficult to classify, but there are (more)
problems with the same complexity.

This motivates the following definition.
W[Sync] := [DFA-SYNC]FPT.

Corollary ]
MonoID FACTORIZATION is W[Sync]-complete.

15



BOUNDED DFA-INTERSECTION




BOUNDED DFA-INTERSECTION

Definition (BOUNDED DFA INTERSECTION (BDFAI))
Input: A finite set A of DFA over an alphabet X and a

positive integer k.

Problem: Isthere astringx € X* that is accepted by each
DFAin A?

Known: BDFAI (param. R) is W[2]-hard (Wareham, 2001),
with param. |A| WNL-complete (Guillemot, 2011).
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A Multivariate Approach To BDFAI

Single Parameters — bivariate

Al Gmax x| k
WNL-c. ¢" XP ¢* XP  WJ[sync]-c.

Guillemot 2011 (Wareham 2001)  Wareham 2001  Bruchertseifer & F 2020

where * assumes P # NP and Gmayx = max{|Qa| | A € A}.
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A Multivariate Approach To BDFAI

Single Parameters — bivariate

Al Gmax x| k
WNL-c. ¢" XP ¢* XP  WJ[sync]-c.

Guillemot 2011 (Wareham 2001)  Wareham 2001  Bruchertseifer & F 2020

where * assumes P # NP and Gmayx = max{|Qa| | A € A}.

Combined Parameters — multivariate

|A| + Gmax  |Al +]Z| |A|+R Gmax +|Z] Gmax+k |[Z|+R
FPT WNL-c.  W[1]-h. FPT W[2]-h.  FPT

Wareham Guillemot Wareham Wareham Wareham Wareham

: FPT-results are close to trivial (quite typical here ...)

17



Proving Membership in W[1]

Theorem
BDFAI, param. by |A| + R, is W[1]-complete.
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Proving Membership in W[1]

Theorem
BDFAI, param. by |A| + R, is W[1]-complete.

Revisit the Guess & Check paradigm:

1. Guess a word w from (XQl4)k,

2. Check if with these letters from X, the DFAs can move
from state to state as guessed.

« Only (|A] 4+ 1) - k many letters are written on the tape.
+ The checking can be done in f(|.A| + R) time.

18



W[Sync| - What Is Inside?




LONGEST COMMON SUBSEQUENCE

Definition (LONGEST COMMON SUBSEQUENCE)
Input: The input consists of 7 strings x4, ..., x, over ¥.

Problem: Find a string w € ¥* occurring in each of the x; as a
subsequence.

Known: LONGEST COMMON SUBSEQUENCE with param. k is W[2]-hard,
wrt. (R, ) W[1]-complete (Bodlaender et al., 1995),
with param. ¢ WNL-complete (Guillemot, 2011)
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Build a DFA A; for each x; that accepts all subsequences of x;.

~+ One can solve a LONGEST COMMON SUBSEQUENCE instance with a
BOUNDED DFA-INTERSECTION instance, preserving our parameter k.
(Wareham, 2001)

Theorem
LONGEST COMMON SUBSEQUENCE € W[Sync].

19



LONGEST COMMON SUBSEQUENCE

Definition (LONGEST COMMON SUBSEQUENCE)

Input: The input consists of 7 strings x4, ..., x, over ¥.

Problem: Find a string w € ¥* occurring in each of the x; as a
subsequence.

Known: LONGEST COMMON SUBSEQUENCE with param. k is W[2]-hard,
wrt. (R, ) W[1]-complete (Bodlaender et al., 1995),
with param. ¢ WNL-complete (Guillemot, 2011)

Build a DFA A; for each x; that accepts all subsequences of x;.

~+ One can solve a LONGEST COMMON SUBSEQUENCE instance with a
BOUNDED DFA-INTERSECTION instance, preserving our parameter k.
(Wareham, 2001)

Theorem
LONGEST COMMON SUBSEQUENCE € W[Sync].

W[Sync]-hardness open
19



Constraint Satisfaction Sitting Between

Definition (CSP CNF SATISFIABILITY)
Input: CSP CNF formula ¢ on kR variables x, . . ., X, over

a finite universe U, atomic sentences x; = u for
1< i < R,u € U, and a CNF built from these
atomic sentences.

Problem: Is ¢ satisfiable?

Our parameter: R
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Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995

20



Constraint Satisfaction Sitting Between

Definition (CSP CNF SATISFIABILITY)
Input: CSP CNF formula ¢ on kR variables x, . . ., X, over

a finite universe U, atomic sentences x; = u for
1< i < R,u € U, and a CNF built from these
atomic sentences.

Problem: Is ¢ satisfiable?
Our parameter: R

Lemma
CSP CNF SATISFIABILITY <gpr LONGEST COMMON SUBSEQUENCE

Idea: Modify proof of Thm. 3 in Bodlaender et al. 1995

Lemma
CSP CNF SATISFIABILITY is W[2]-hard.

Idea: Reduce from HITTING SET
20



Back to Algebra: Permutation Group Factorization

Special case of Monoid Factorization if all f; are bijections.
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Back to Algebra: Permutation Group Factorization

Special case of Monoid Factorization if all f; are bijections.
~~ Permutation Group Factorization € W[sync].

Theorem
(Cai et al. 1997) Permutation Group Factorization is W[1]-hard.

Reduction from Perfect Code.

Similar proof of W[1]-hardness for SiIZzED SUBSET Sum:
Given positive integers Xo, X1, . . ., Xm, and integer R, select k integers
from x4, ..., X, that sum up to x..

21



W[Sync]| - What Is Outside?




Non-Universality For NFAs

Definition (BOUNDED NFA NON-UNIVERSALITY)
Input: NFA A with input alphabet ¥, k € N.

Problem: Is there a word w € ¥ not accepted by A?
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Non-Universality For NFAs

Definition (BOUNDED NFA NON-UNIVERSALITY)
Input: NFA A with input alphabet ¥, k € N.

Problem: Is there a word w € ¥ not accepted by A?
Lemma

BOUNDED NFA NON-UNIVERSALITY is W[Sync]-hard.
Lemma

BOUNDED NFA NON-UNIVERSALITY € A[2].

A[2]-1dea: Guess word w € ¥*, check if all paths through NFA reject.
For W[P]: Do powerset construction on the tape, updating additional
|Q| bits when digesting the guessed word.

Open problem with WNL

22



Bounded NFA-Intersection

Main parameters: k: length of the common string, or |A|
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Bounded NFA-Intersection

Main parameters: k: length of the common string, or |A|
Lemma
BOUNDED NFA-INTERSECTION (wrt. R) is W[Sync]-hard.

Lemma
BOUNDED NFA-INTERSECTION (wrt. R) is in WNL.

Lemma
BOUNDED NFA-INTERSECTION (wrt. R) is in A[3].

Open: What about W[P] or A[2]?

Theorem
(Hoffmann) BoUNDED NFA-INTERSECTION (wrt. |A|) is

co-W[2]-hard.
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A Queer Problem: Small Synchronizable Sub-automata

Definition
DFA-MSS (Minimum synchronizable sub-automaton)]

Input: DFA A with input alphabet X, k € N.

Problem: Is there a sub-alphabet ¥ C ¥, || < k, such
that the restriction of A to ¥ is synchonizable,
i.e., is there a synchronizing word over ¥?
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A Queer Problem: Small Synchronizable Sub-automata

Definition
DFA-MSS (Minimum synchronizable sub-automaton)]

Input: DFA A with input alphabet X, k € N.

Problem: Is there a sub-alphabet ¥ C ¥, || < k, such
that the restriction of A to ¥ is synchonizable,
i.e., is there a synchronizing word over ¥?

The NP-hardness proof by Tiirker and Yenegiin (2015) gives:

Corollary
DFA-MSS is W[2]-hard.

Theorem
DFA-MSS € WNL N WIP].

Open: Relation to W[Sync]

24



Al1] A[Z] — AB] —— -+ ————  AWISAT| — AW[P|
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Figure 5: Overview of the complexity classes

Observe: Classes W[Sync] and WNL mostly inhabited by
combinatorial formal language problems.
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Al1] A[Z] — AB] —— -+ ————  AWISAT| — AW[P|
FPT W\Sy cI / — XPNpara-NP - XP
W1 —— W[2 —»/—> W[SAT] W[P] para-NP

Figure 5: Overview of the complexity classes

Observe: Classes W[Sync] and WNL mostly inhabited by
combinatorial formal language problems.

As W[Sync] C para-NP, it is “unlikely” that W[Sync] = A[2].

Then, =-problems would as “easy” as SAT, see PhD of R. de Haan (Vienna, 2016).

Still, many questions are open, including positioning the
co-W-classes. 25



Wishing you a very. /z/fV/*/ /Jr’/’//(/fy

May you have many more years of

happiness and success ahead!
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