
Automata and Grammars for
Weighted Graph Languages

(with emphasis on parsing and weight computation)

Frank Drewes

Department of Computing Science
Umeå University

23 June 2021

Contents

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

Graphs

Graphs occur everywhere in computer science.

Usually, there have to adhere to some well-formedness requirement.

Examples: knowledge bases, program analysis, chemical structures,
natural language semantics, . . .

Emma asks Jane to trust her.

ask

Emma Jane

trust

her

arg0 arg1

arg2

arg0

arg1

ask

Emma Jane

trust

her

arg0 arg1

arg2

arg1

arg0

ask

Emma Jane

trustarg0 arg1

arg2

arg0
arg1

(correct) (incorrect) (more likely?)

Graph Languages

As usual, collecting well-formed graphs yields a graph language.

(Finite) formalisms to describe such languages are automata,
grammars, logic, . . .

Weights (e.g., probabilities) become useful if some are more likely
than others or only somewhat correct.

ask

Emma Jane

trustarg0 arg1

arg2

arg0

arg1

Emma asks Jane to trust her(self?).

Lost in Graphs

Major difficulty when considering graphs instead of strings/trees:

Graphs do not provide a natural processing order.

No self-evident unique starts and ends.

Associative-commutative substructures.

Disconnectedness.

Automorphisms.

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

An Old NP-Completeness Result
[Aalbersberg, Rozenberg, Ehrenfeucht ’86] (also [Lange, Welzl ’87])

Start:
a

b

S

1

2

Rules:

S(2) →
〈1〉

〈2〉

a

b

S
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

a

b

A
1

2

A(2) →
〈1〉

〈2〉

a

b

A
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

a

b

S
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

Derivation:
a

b

S ⇒
a

b

a

b

S ⇒
a

b

a

b

a

b

A ⇒
a

b

a

b

a

b

a

b

S ⇒∗

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

An Old NP-Completeness Result
[Aalbersberg, Rozenberg, Ehrenfeucht ’86] (also [Lange, Welzl ’87])

Start:
a

b

S

1

2

Rules:

S(2) →
〈1〉

〈2〉

a

b

S
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

a

b

A
1

2

A(2) →
〈1〉

〈2〉

a

b

A
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

a

b

S
1

2

∣∣∣∣∣∣
〈1〉

〈2〉

Derivation:
a

b

S ⇒
a

b

a

b

S ⇒
a

b

a

b

a

b

A ⇒
a

b

a

b

a

b

a

b

S ⇒∗

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

For Those Who Dislike Disconnected Graphs

To generate connected graphs, add a node with edges to all nodes:

c

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

(Together, connectedness and bounded node degree do help.)

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

A Simple Notion of DAG Automata
[Chiang, FD, Gildea, Lopez, Satta ’18 & Blum, FD ’19])

Consider directed acyclic graphs
(labeled nodes, unlabeled edges).

Runs assign states to edges.
Rules are of the form

〈p1, . . . , pk〉
a−→ 〈q1, . . . , q`〉

Graphically: a

p1 p2 pk

q1 q2 qk

· · ·

· · ·

Simple formalism, nice theory,
but again NP-complete.

Reduction from SAT:
∧

∨

∨¬

∨

¬∨

A Weighted Version

Weights from a semiring S can be added to rules as usual.

Expectedly,

I rule weights of a run are multiplied
I weights of alternative runs are summed up.

We can compute the weight of a DAG by edge contraction.

Weight Computation

For every star a

· · ·

· · ·

k︷ ︸︸ ︷

︸ ︷︷ ︸
`

maintain a partial mapping of weight
assignments α : Qk+` ⇀ S.

Initially, weights are given by the rules 〈p1, . . . , pk〉
a/w−→ 〈q1, . . . , q`〉.

In each step, an edge is contracted, joining two stars.

When only one node is left, α() ∈ S is the computed weight.

Weight Computation Algorithm – Example

v1

v2

q1

q1

v3 v4

q2

q2

q3

q3

v5

q4

q4

q5

q5

⇒

v1

(v2, v3)

q1
q1

v4

q3
q3

v5

q4

q4

q5

q5

⇒

(v1, v2, v3)

v4

q3

q3

v5

q4

q4

q5

q5

⇒2 (v1, v2, v3, v4, v5)

Weight Computation Algorithm – Efficiency

Running time depends on the how big the produced stars become.

⇒ order of edge contractions is important.

An optimal tree decomposition of the DAG’s line graph LG(D)
yields the most economical order.

Running time then becomes O(|E| · |Q|treewidth(LG(D))+1).

In some cases this can be improved by binarizing DAGs and rules.

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

Hyperedge Replacement (HR)

HR grammars (HRGs) use rules that replace hyperedges.

Example:

(rule) A(3) →

〈1〉 〈2〉

〈3〉

a b
A

1 2

3

B
12

c c

d d

c

A
1 2

3

⇒

c c

d d

c

a b
A

1 2

3

B
12

(application)

Parsing Weighted HRGs

Now, let’s add weights . . .

Weight computation is difficult (by NP-completeness).

However, in general, not even the definition seems obvious (to me).

Consider rules S(0) 1−→ A
h

A
h′

, A(0) 1−→ a generating a
v
a

v′

.

We have two (concrete) derivation trees: h generates either v or v′.

But the grammar is deterministic.
We probably do not want to sum up over both.

If not, then restrictions for polynomial parsing to make CYK
efficient may yield wrong results if used to compute weights.

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

Reentrancy Preservation
[Björklund, FD, Ericson, Starke ’21, H. Björklund, FD, Ericson ’19]

Possible solution: restrictions that ensure unique decompositions.

One way to achieve this: reentrancy preservation.

1. Useful because reentrancies are important in NLP.

Recall

ask

Emma Jane

trustarg0 arg1

arg2

arg0

arg1

or
ask

1
2

3

Emma Jane

trust
1

2

2. Idea: decisions about reentrancies must be made immediately.

A B

Reentrancy-Preserving HRGs

A rule is reentrancy preserving if, in its right-hand side

1. all targets of nonterminal hyperedges are reentrant,
2. all nodes are reachable from the “root” 〈0〉,
3. the out-degree of every node is at most 1.1

⇒ reentrancies are preserved during the course of a derivation

⇒ the subgraph rooted at node v that is potentially generated
by nonterminal A is uniquely determined by cutting off at
the reentrant nodes.

⇒ uniformly quadratic bottom-up parsing algorithm

Since the problems discussed earlier are avoided, this algorithm
carries over to the weighted case.

1. . . except in so-called duplication rules.

Outline

Graph Languages

Parsing is Difficult

DAG Automata for Natural Language Processing

Hyperedge Replacement (HR) Grammars

Reentrancy Preserving HR Grammars

Graph Extension Grammars – Context-Freeness Left Behind

NP-Complete, yet too Weak?

In NLP, we have both

I structural reentrancies (caused by, e.g., control structures) and
I non-structural ones (caused by, e.g., pronouns).

HRGs are good at the former, but quite bad at the latter.

and

say

and

recommendwant

content

experienceI

askthink −
think

thing

Jill

we

location

op1

op2

op3

ARG1

ARG0

ARG2

op1 op2

ARG0

ARG2

ARG1

ARG0

ARG1

ARG1

polarity ARG0

ARG0

ARG2

ARG1

ARG2

ARG1

ARG0
ARG2

ARG0

location

I asked Jill what she thought about where we’d be and she said she doesn’t
want to think about that, and that I should be happy about the experiences
we’ve had (which I am).

What Do We Need?

We need a way for rules to access nodes not incident with the
replaced hyperedge.

Should not allow much control (to limit power).

This is the idea of contextual hyperedge replacement.

Contextual Hyperedge Replacement
[Joint work with Hoffmann & Minas]

Left-hand sides can now contain additional isolated nodes.

Such a node can refer to any (equally labeled) node in the graph
⇒ non-structural connections can be made.

action

person place

V →

action

person place

sit

action

person place

V

person

→

action

person place
person

meet

Disadvantage: Parsing has to take cyclic dependencies into account
⇒ yet another detriment to efficient parsing (though still in NP)

A “tamed” version: graph extension grammars.

Detour: HRG à la Mezei & Wright

View a hypergraph H with n nonterminals h1, . . . , hn as an
operation:

H(G1, . . . , Gn) := H[h1 ← G1, . . . , hn ← Gn]

Then an HRG can be understood as

I a regular tree grammar generating trees over such operations
I followed by an evaluation of the generated trees.

By the context-freeness of HR, this yields an equivalent view of
HRGs.

Graph Extension Grammars
[J. Björklund, FD, Jonsson ’21]

Idea of graph extension grammars:

I Use the tree-based formulation of HRGs.
I Extend operations by contextual nodes, so that they can

“reach out” to nodes in the argument graph.
I Restrict operations structurally to enable polynomial parsing.

Graph Extension Operation by Example

Operations: H1 =
1 2

person

meet
〈1〉

H2 =
1

action
〈1〉

person
〈1〉

place
〈2〉

person

person

person
place

person

person

meet
〈1〉

person
place

person

person

meet

action
〈1〉

graph G H1(G) H2(H1(G))

Graph Extension Grammars

A graph extension grammar consists of

1. a set of graph extension and graph union operations and
2. a regular tree grammar generating trees over those operations.

Evaluating the generated trees yields the generated graph language.

The restrictions allow for polynomial parsing.

We do not yet have a weighted version, but I would love to
find out whether it’s possible while preserving polynomial parsing.

If anyone is interested to join, please let us know.

Thank you very much for
listening!

	Outline
	Graph Languages
	Parsing is Difficult
	DAG Automata for Natural Language Processing
	Hyperedge Replacement (HR) Grammars
	Reentrancy Preserving HR Grammars
	Graph Extension Grammars – Context-Freeness Left Behind

